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Theoretical and computational aspects of the method of interfacial dynamics for
flow at vanishing Reynolds number are considered. The mathematical formulation
relies on the boundary-integral representation that expresses the flow in terms of
distributions of Stokes-flow singularities over the interfaces. The densities of the
distributions are identified with the jump in the hydrodynamic traction due to in-
terfacial in-plane and transverse tensions, the interfacial velocity, or the strength of
a hydrodynamic potential. The numerical procedure involves describing the inter-
faces in terms of interfacial marker points that reproduce the evolving shapes of the
interfaces by global or local interpolation; solving integral equations of the second
kind for the interfacial velocity or for the density of a hydrodynamic potential; and
computing the motion of the marker points while simultaneously updating interfacial
fields relevant to the dynamics, including the concentration of a surfactant and the
position of interfacial point particles at an equilibrium configuration. Interfaces ex-
hibiting isotropic tension, elastic tensions, viscous, and incompressible behavior are
considered. The mathematical modeling of the tensions and bending moments devel-
oping over interfaces with a membrane-like constitution is discussed in the context
of the theory of thin shells. To facilitate the numerical implementation, the coupling
of the interfacial mechanics to the hydrodynamics by means of interface force and
torque balances is formulated in global Cartesian coordinates. Recent progress in
the implementation of boundary-element methods is reviewed, and areas for further
research are identified. c© 2001 Academic Press
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1. INTRODUCTION

In two seminal papers, Jawson [59] and Symm [183] demonstrated that the integral
equations relating the boundary values of a harmonic function to the boundary distribution
of its normal derivative may be solved accurately and economically using relatively simple
numerical methods. In the nearly four decades that have elapsed, their approach has been
extended and generalized to encompass a multitude of problems in several branches of
science and engineering. The new methodology has spawned the well-established class of
boundary-element methods founded by Brebbia [17] with initial emphasis on potential-
field theory and elastostatics. Numerical solutions of the boundary-integral equation for
Stokes flow were first presented by Youngren and Acrivos [200] with reference to flow
past a rigid particle. A growing body of literature on boundary-integral-equation methods
and their derivative class of boundary-element methods for low-Reynolds-number flow has
been established since that time, as reviewed by Kim and Karrila [66] and Pozrikidis [127].

The boundary-integral representation expresses the solution of a linear elliptic partial dif-
ferential equation in terms of generalized distributions of singularities over boundaries. The
goal of the numerical method is to generate the densities of the distributions by solving an in-
tegral equation that descends from the boundary-integral representation. If jump-conditions
across the interface between two solution domains instead of boundary conditions are spec-
ified, the two integral representations on either side of the interface may be combined into
a unified form. The coupling can be done either before or after the integral equations have
been discretized to yield algebraic forms. The first approach produces elegant and physi-
cally appealing representations in terms of geometrical shapes and material properties, and
thereby allows for insightful interpretations. For example, in the case of fluid flow past
an interface with uniform surface tension, the integral representation expresses the flow
variables in terms of the interfacial mean curvature, and the overall formulation effectively
implements a dynamical law for the self-induced motion of the interface driven by its
curvature.

Integral equations for Stokes flow involving the jump in the traction across an interface
were first derived by Youngren and Acrivos [201] and Rallison and Acrivos [149] with ref-
erence to the deformation of a bubble or drop subject to an axisymmetric elongational flow.
In subsequent years, considerable progress has been made on several fronts: Generalization
of the integral formulations with respect to interfacial properties and flow configuration;
theoretical analysis of the properties of the integral equations; and implementation of ef-
ficient numerical procedures for simulating complex interfacial motions. Advanced inter-
facial properties and many-body systems with applications in materials science, chemical
engineering, geophysics, and biomechanics have also been considered.

The mathematical foundation of, and early work on, boundary-integral methods for Stokes
flow in the presence of interfaces was reviewed by Pozrikidis [127]; the present article serves
as an update. Recent and some original theoretical developments are discussed, new types
of interfacial properties are considered, progress on numerical implementation is reported,
and topics for further research are identified. Attention is focused exclusively on Newtonian
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fluids and on quasi-steady flow at vanishing Reynolds number. The articles by Tooseet al.
[186], Occhialiniet al. [116], and Khayat [63] are points of entry into the rather limited
but growing literature of boundary-integral methods for non-Newtonian fluids and flow at
nonzero Reynolds numbers.

2. INTEGRAL REPRESENTATIONS AND INTEGRAL EQUATIONS

Consider the motion of a collection of deformable particles, including bubbles, drops,
and capsules, consisting of the same or different Newtonian fluids, suspended in another
ambient Newtonian fluid. In the limit of vanishing Reynolds numberRe, whereReis defined
with respect to the typical particle size, inertial forces are insignificant, and the motion of
the fluid inside and outside the particles is governed by the linear equations of Stokes flow
(e.g., Pozrikidis [127, 133]).

In this section, we review boundary-integral formulations that provide us with a basis
for computing the instantaneous distribution of the velocity over the interfaces, and for
evaluating the velocity and the pressure at any point in the flow.

2.1. Two-Dimensional Flow

To begin, we consider a suspension ofN two-dimensional particles evolving under the
influence of an imposed flow, as illustrated in Fig. 1a. Requiring that the velocity be con-
tinuous across the interfaces, and following a standard methodology (e.g., Pozrikidis, [127,
Chap. 5]), we find that the velocity at a pointx0 that is located within the suspending fluid
is given by the integral representation

u j (x0) = u∞j (x0)− 1

4πµs

N∑
m=1

∫
Cm

1 f̃ i (x)Gi j (x, x0) dl(x)

+ 1

4π

N∑
m=1

(1− λm)

∫
Cm

ui (x)Ti jk (x, x0)nk(x) dl(x), (2.1)

whereu∞ is the imposed velocity prevailing in the absence of the particles,Cm stands for the
interface of themth particle,l is the arc length alongCm, µs is the viscosity of the ambient
suspending fluid,µm is the viscosity of themth particle,λm = µm/µs is the corresponding
viscosity ratio, andn is the unit vector normal to the interfaces pointing into the ambient
fluid. In the case of flow extending to infinity, the boundary-integral representation must be
derived carefully to avoid the occurrence of Stokes’s paradox where far from the particles
the velocity diverges at a logarithmic rate.

The first integral on the right-hand side of (2.1) is the single-layer hydrodynamic potential,
and the second integral is the double-layer hydrodynamic potential of Stokes flow. The
kernelsG andT are the Green’s functions of Stokes flow representing, respectively, the
velocity and stress field due to a point force in solitary or periodic configuration. We have
assumed that the Green’s function for the velocity conforms with the specified periodicity
of the flow and vanishes over the solid boundaries of the flow. For example, if the flow
is bounded by the rigid boundaryCB, then the velocity Green’s functionG is required to
vanish when either the point force or the field point is located onCB; otherwise, additional
integrals over boundaries arise.
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FIG. 1. Schematic illustration of a suspension of capsules in (a) two-dimensional, (b) three-dimensional, and
(c) axisymmetric flow.

The density of the distribution of the single-layer potential, denoted by1f̃, is the
modified jump in the traction across the particle interface, defined as

1f̃ ≡ f̃ (s) − f̃ (p) = (σ̃ (s) − σ̃ (p)
) · n, (2.2)

whereσ̃ is the Newtonian stress tensor modified to incorporate the presence of a conservative
body force, the superscript (s) denotes the ambient suspending fluid, and the superscript (p)
denotes a particle. For example, if the body force is due to gravity, then ˜σ = σ + ρ(g · x)I ,
whereg is the acceleration of gravity andI is the identity matrix. Accordingly,

1f̃ ≡ = {[σ (s) + ρ(s)(g · x)I
]− [σ (p) + ρ(p)(g · x)I

]} · n
= 1f + (ρ(s) − ρ(p)

)
(g · x)n, (2.3)
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where

1f ≡ f (s) − f (p) = (σ (s) − σ (p)
) · n (2.4)

is the physical jump in traction determined by the properties of the interface, as will be
discussed in Sections 3–7.

For a pointx0 that lies inside theqth particle, whereq = 1, . . . , N, the velocity is given
by the integral representation (2.1), except that all terms on the right-hand side are divided
by the viscosity ratioλq. Taking the limit as the pointx0 approaches the interface of theqth
particle, and expressing the limit of the double-layer potential in terms of its principal value,
we derive the following Fredholm integral equation of the second kind for the interfacial
velocity (also known as the boundary-integral equation),

u j (x0) = 2

1+ λq

[
u∞j (x0)− 1

4πµs

N∑
m=1

∫
Cm

1 f̃ i (x)Gi j (x, x0) dl(x)

+ 1

4π

N∑
m=1

(1− λm)

∫ PV

Cm

ui (x)Ti jk (x, x0)nk(x) dl(x)

]
,

(2.5)

where PV denotes the principal value (e.g., Pozrikidis [127]). The solution of this integral
equation is the cornerstone of computational methods for interfacial dynamics in Stokes
flow.

An alternative formulation in terms of the vorticity and the stream function is possible in
the case of two-dimensional flow or axisymmetric flow, to be considered later in this section
[62, 71]. The present formulation in terms of the velocity and the traction, however, has the
advantage that it may readily be extended to three dimensions and allows the straightforward
implementation of different types of interfacial behavior.

2.2. Three-Dimensional Flow

Next, we consider a suspension ofN three-dimensional particles evolving under the
influence of an imposed flow, as illustrated in Fig. 1b. The counterpart of the boundary-
integral representation (2.1) is

u j (x0) = u∞j (x0)− 1

8πµs

N∑
m=1

∫
Dm

1 f̃ i (x)Gi j (x, x0) dS(x)

+ 1

8π

N∑
m=1

(1− λm)

∫
Dm

ui (x)Ti jk (x, x0)nk(x) dS(x), (2.6)

whereDm stands for the interface of themth particle,dSis an infinitesimal surface area of
Dm, and the rest of the symbols were defined in Section 2.1. For a pointx0 that lies inside
theqth particle, whereq = 1, . . . , N, the velocity is given by the integral representation
(2.6) except that all terms on the right-hand side are divided by the viscosity ratioλq. The
counterpart of the integral equation (2.5) is

u j (x0) = 2

1+ λq

[
u∞j (x0)− 1

8πµs

N∑
m=1

∫
Sm

1 f̃ i (x)Gi j (x, x0) dS(x)

+ 1

8π

N∑
m=1

(1− λm)

∫ PV

Sm

ui (x)Ti jk (x, x0)nk(x) dS(x)

]
, (2.7)
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where the pointx0 lies at the interface of theqth particle,q = 1, . . . , N, and PV denotes
the principal value of the double-layer integral.

2.3. Axisymmetric Flow

As a special case of three-dimensional flow, we consider a suspension ofN coaxial
axisymmetric particles evolving under the influence of an imposed axisymmetric flow, pos-
sibly in the presence of axisymmetric boundaries, as illustrated in Fig. 1c. The counterpart
of the integral representation (2.1) is

uα(x0) = u∞α (x0)− 1

8πµs

N∑
m=1

∫
Cm

Gαβ(x, x0)1 f̃ β(x) dl(x)

+ 1

8π

N∑
m=1

(1− λm)

∫
Cm

uβ(x)Tαβγ (x, x0)nγ (x) dl(x), (2.8)

where Greek symbols stand forx orσ denoting, respectively, thex position and the distance
from thex axis, as illustrated in Fig. 1c,Cm stands for the trace of the interface of themth
particle in a meridional plane of constant angleϕ, and the rest of the symbols were defined
in Section 2.1.

For a pointx0 that lies inside theqth particle, whereq = 1, . . . , N, the velocity is given
by the integral representation (2.8) except that all terms on the right-hand side are divided
by the viscosity ratioλq. The counterpart of the integral equation (2.5) is

uα(x0) = 2

1+ λq

[
u∞α (x0)− 1

8πµs

N∑
m=1

∫
Cm

Gαβ(x, x0)1 f̃ β(x) dl(x)

+ 1

8π

N∑
m=1

(1− λm)

∫ PV

Cm

uα(x)Tαβγ (x, x0)nγ (x) dl(x)

]
, (2.9)

where the pointx0 lies at the interface of theqth particle,q = 1, . . . , N.

2.4. Single-Layer Representation

We have discussed integral representations of Stokes flow in terms of combined single-
layer and double-layer potentials with physical density distributions. To evaluate the velocity
at a certain point in the flow, we must first assess whether the point lies in the interior or
exterior of a particle, and then use the corresponding integral representation. Locating the
position of a point relative to the interfaces can be done by several methods with varying
degrees of reliability and sophistication (e.g., Pozrikidis [136, Chap. 1]). The additional
effort, however, imposes an undesirable computational burden especially when a large
number of evaluations are required.

To circumvent this difficulty, we express the flow in terms of a single-layer potential with
an a priori unknown density distribution. For example, in the case of three-dimensional
flow, we write

ui (x0) = u∞i (x0)−
N∑

m=1

∫
Dm

Gi j (x0, x)χ j (x) dS(x), (2.10)
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whereχ is the density of the single-layer potential, and the pointx0 lies inside or outside a
particle (Pozrikidis [124; 127, p. 145]). Straightforward analysis shows thatχ satisfies the
integral equation of the second kind

χi (x0) = 2

8πµs(1+ λq)

[
(1− λq) f∞i (x0)−1 f̃ i (x0)

+
N∑

m=1

(1− λm)

∫ PV

Dm

Ti jk (x0, x) χ j (x0)nk(x0) dS(x)

]
, (2.11)

where the pointx0 is located at theqth interface,q = 1, . . . , N, and f∞i = σ∞i j n j

is the traction of the incident flow. The principal-value integral on the right-hand side
of (2.11) is the adjoint of the double-layer potential shown on the right-hand side of
(2.7).

2.5. Green’s Functions

It was mentioned earlier that the use of a Green’s function that conforms with the period-
icity of the flow and whose induced velocity vanishes over the solid boundaries of the flow
considerably simplifies the integral representation and facilitates the solution of the integral
equations. Green’s functions for a broad range of flows have been developed and reviewed
by several authors including Davis [28], Pozrikidis [127, 132], Maul and Kim [104], and
Coulliette and Pozrikidis [25]. Subroutines that evaluate several families of Green’s func-
tions for two-dimensional, axisymmetric, and three-dimensional flow are available in the
fluid dynamics software library FDLIB [139].

When a large number of evaluations are required, it is expedient to tabulate properly desin-
gularized components of the Green’s function with respect to dimensionless arguments, and
then compute them by interpolation [91, 25, 81, 22]. The interpolation, however, must be
sufficiently accurate; otherwise the method of successive substitutions for solving the in-
tegral equations discussed in Section 2.6 may fail, and the interfaces may artificially cross
during the motion.

2.6. Properties of the Integral Equations

The properties of the integral equations of the second kind depend on the values of
the viscosity ratiosλm and on the choice of the Green’s function. When all interfaces
are closed and all viscosity ratios are equal, the integral equations have a unique solution
as long as none of the fluids is inviscid [66, 124]. Moreover, the solution may be found
by the method of successive substitutions, and deflation may be implemented to expedite
convergence. Theoretical analyses of the integral equations for other flow configurations
have been carried out by several authors including Power [120, 121, 122], Van de Vorst
[192], Pozrikidis [138], and Primoet al. [146, 147].

3. INTERFACES WITH ISOTROPIC TENSION

Differences in the magnitude of the attractive forces between the molecules of two im-
miscible species on either side of an interface cause the development of isotropic surface
tensionγ (e.g., Adamson [1]). Heating and the presence of surfactants alter the strength of
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these forces and render the surface tension a function of temperature and local surfactant
concentration. As the temperature or the surfactant concentration is reduced, the surface
tension is raised; when the temperature reaches the critical point, the surface tension van-
ishes. Tangential surface-tension gradients generate hydrodynamic tractions identified as
Marangoni stresses that may have a significant influence on the structure of the flow and on
the deformation of an interface.

3.1. Jump in the Traction across an Interface

Consider an interfacial patch enclosed by the contourC, as illustrated in Fig. 2. A force
balance over the patch requires

∫
Patch

(
σ (s) − σ (p)

) · n dS+
∫

C
γ b dl = 0, (3.1)

whereb = t × n is a unit vector that is tangential to the interface and lies in a plane that
is normal toC, as depicted in Fig. 2,t is the unit vector tangential toC, andl is the arc
length alongC. If the interface is described by the equationG(x, t) = 0, whereG is a
generally time-dependent function, then the unit normal vector is given byn = ∇G/|∇G|.
This expression allows us to extend the domain of definition of the normal vector off the
plane of the interface and into the whole three-dimensional space. Applying Stokes’ theorem
to convert the contour integral to a surface integral on the right-hand side of (3.1), and letting
the size of the patch become infinitesimal, we find that the jump in hydrodynamic traction
across the interface is given by

1f = (σ (s) − σ (p)
) · n = γ 2κmn− P · ∇γ, (3.2)

whereκm = 1
2∇ · n is the mean curvature, andP= I − nn is the tangential projection

operator (e.g., Pozrikidis [127, p. 148]). The two terms on the right-hand side of (3.2)
express, respectively, the normal and tangential components of the jump in traction. An
alternative derivation of (3.2) will be presented in Section 4 in a more general framework.

FIG. 2. Force and torque balances are performed over a section of an interface.
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3.2. Double-Layer Representation

In the Appendix, we show that two arbitrary vector functionsA andB defined in three-
dimensional space satisfy the integral identity (A.4), where the domain of integrationD is
a closed surface. Let us identifyD with the interface of a particle, extend the domain of
definition of the normal vector and surface tension into the whole space, and set

Ai (x) = Gik(x, x0), Bi (x) = γ (x)ni (x), (3.3)

where the singular pointx0 lies in the exterior ofD, andk is a free index defining the
orientation of the point force. With these choices, identity (A.4) yields∫

D

∂

∂xj
[Gik(x, x0)γ (x)nj (x)]ni (x) dS(x) =

∫
D

∂

∂xj
[G jk(x, x0)γ (x)ni (x)]ni (x) dS(x).

(3.4)

We expand the derivatives of the products on either side, note that the continuity equation
requires∂G jk(x, x0)/∂xj = 0, take into consideration the unit-length constraints|n| = 1
and(∇n) · n = 1

2∇|n|2 = 0, and thus find∫
D

∂γ

∂xj
Gik(x, x0)nj (x)ni (x) dS(x)+

∫
D

γ (x)
∂Gik(x, x0)

∂xj
n j (x)ni (x) dS(x)

+
∫

D
γ (x)Gik(x, x0)

∂nj

∂xj
n j (x) dS(x) =

∫
D

∂γ

∂xj
G jk(x, x0) dS(x). (3.5)

Straightforward rearrangement of (3.5) yields∫
D

Gik(x, x0)

[
γ

∂nj

∂xj
ni − ∂γ

∂xj
(δi j − nj ni )

]
(x) dS(x)

=−
∫

D
γ (x)

∂Gik(x, x0)

∂xj
n j (x)ni (x) dS(x). (3.6)

The left-hand hand side of (3.6) is thekth component of the single-layer potential with jump
in traction given by (3.2).

In summary, we have expressed the single-layer potential associated with (3.2), to be
denoted byIS, in terms of an interfacial distribution of point-force dipoles in the form

I S
j (x0) =

∫
D

Gi j (x, x0)1 fi (x) dS(x) = −
∫

D
γ (x)

∂Gi j (x, x0)

∂xk
ni (x)nk(x) dS(x). (3.7)

To be more specific, we consider the free-space point-force dipole given by

∂Gi j (x, x0)

∂xk
= δi j x̂k − δik x̂ j − δ jk x̂i

|x̂|3 + 3
x̂i x̂ j x̂k

|x̂|5 , (3.8)

wherex̂ = x− x0 (e.g., Pozrikidis [133, p. 261]). Substituting this expression into the last
integral of (3.7), we find

I S
j (x0) =

∫
D

γ (x)
x̂ j

|x̂|3
[
1− 3

[x̂ · n(x)]2

|x̂|2
]

dS(x), (3.9)

which is consistent with an expression for interfaces with constant surface tension presented
by Zinchenkoet al. [210, Eq. (40)], working in surface curvilinear coordinates. Zinchenko
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et al.[211] find that, with proper regularizaton, as will be discussed in later sections, the so-
called “curvatureless” formulation expressed by (3.9) has certain computational advantages
over the primary single-layer formulation for shapes with strongly varying mean curvature.

Now, because the tensornn is symmetric, the Green’s function dipole on the right-
hand side of (3.7) may be replaced by its symmetric component with respect to the
repeated indicesi and k. Invoking the definition of the Green’s function stress tensor,
Ti jk = −δik pj + ∂Gi j /∂xk + ∂Gkj/∂xi , where pj is the Green’s function vector for the
pressure (e.g., Pozrikidis [127, p. 25]), we write

I S
j (x0) = −1

2

∫
D

γ (x)pj (x, x0) dS(x)− 1

2

∫
D

γ (x)Ti jk (x, x0)ni (x)nk(x) dS(x). (3.10)

If the flow is not enclosed entirely by an impenetrable boundary, the first term on the
right-hand side of (3.10) expresses the velocity at the pointx0 due to a distribution of point
sources with uniform density proportional to the surface tension (Pozrikidis [127, p. 80]). For
example, in the case of flow in an infinite domain,pj (x, x0) = 2x̂ j /|x̂|3. The second integral
on the right-hand side of (3.10) is the double-layer potential with vectorial strength propor-
tional to the normal vector. As the pointx0 crosses the interface, each one of the integrals
on the right-hand side of (3.10) suffers a discontinuity, but the two discontinuities cancel
one another to give a net contribution that is continuous throughout the domain of flow.

When the pointx0 lies at the interface, the integrand of the double-layer potential in
(3.10) is nonsingular: as the integration pointx approaches the evaluation pointx0, the
stress tensorTi jk behaves like the one corresponding to the free-space Green’s function,
Ti jk (x, x0) ' −6x̂i x̂ j x̂k/|x̂|5, the distancêx tends to become orthogonal to the normal vector
n, the projection̂x · n vanishes quadratically with respect tox̂, and the kernel of the double-
layer potential tends to a finite value that depends on the orientation ofx̂. In contrast, the
integrand of the first integral on the left-hand side of (3.10) diverges quadratically with
respect to|x̂|.

Restricting our attention to neutrally buoyant particles, we substitute expression (3.10)
into the boundary-integral representation (2.6) and obtain a representation in terms of a
Laplace single-layer potential and a Stokes double-layer potential,

u j (x0) = u∞j (x0)+ 1

16πµs

N∑
m=1

∫
Dm

γ (x)pj (x, x0) dS(x)

+ 1

8πµs

N∑
m=1

∫
Dm

[
1

2
γ ni + µs(1− λm)ui

]
(x)Ti jk (x, x0)nk(x) dS(x). (3.11)

The representation (3.11) is valid at a pointx0 that lies in the exterior of a particle. For
a point that lies in the interior of theqth interface, all terms on the right-hand side should
be divided by the viscosity ratioλq. Taking the limit as the pointx0 approaches theqth
interface, we obtain the integral equation

u j (x0) = 2

1+ λq

[
u∞j (x0)+ 1

16πµs

N∑
m=1

∫ PV

Dm

γ (x)pj (x, x0) dS(x)

]

+ 1

8πµs

N∑
m=1

∫ PV

Dm

[
1

2
γ ni + µs(1− λm)ui

]
(x)Ti jk (x, x0)nk(x) dS(x), (3.12)
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where PV denotes the principal value of the underlying integral. The computation of the
principal value of the integrals on the right-hand side of (3.12) will be discussed in Section 8.

3.3. Suspension Rheology

Carrying out the multipole expansion, we find that the coefficient of the stresslet deduced
from the double-layer integral on the right-hand side of (3.11) is given by

6ik = cδik −
N∑

m=1

∫
Dm

[γ ni nk + µs(1− λm)(ui nk + ukni )](x) dS(x), (3.13)

wherec is an arbitrary constant (e.g., Pozrikidis [127, pp. 47, 143]). Batchelor [12] showed
that the right-hand side of (3.13) represents the contribution of the interfaces to the effective
stress tensor of a suspension. Straightforward rearrangement of (3.13) yields

6ik = c′δik + 2Wik − µs

N∑
m=1

(1− λm)

∫
Dm

(ui nk + ukni )](x) dS(x), (3.14)

wherec′ is a new constant, and

Wik = 1

2

N∑
m=1

∫
Dm

γ (x)[δik − ni (x)nk(x)] dS(x) (3.15)

is the surface energy tensor generalized for varying surface tension [156]. When the surface
tensionγ is constant, the trace ofW is equal toγ SD, whereSD is the surface area of the
interfaces. The significant new result is that the right-hand side of (3.14) may be evaluated
from knowledge of the shape of the interfaces and interfacial distributions of the velocity
and surface tension; whenλm = 1, for all m, the interfacial velocity is not required.

Applying identity (A.5) of the Appendix withBj = γ nj xl , wherel is a free index, we
find

Wik = 1

2

N∑
m=1

∫
Dm

xi 1 fk(x) dS(x), (3.16)

where1f is given by (3.2). Substituting this expression into (3.14), we recover the general
form

6ik = c′δik +
N∑

m=1

∫
Dm

[xi 1 fk − µs(1− λm)(ui nk + ukni )](x) dS(x), (3.17)

which is applicable for an arbitrary traction discontinuity1f.

3.4. Evolution of the Concentration of an Immiscible Surfactant

When an interface is occupied by an insoluble surfactant, the evolution of the surfactant
concentration must be computed simultaneously with the motion of the interface. In the
numerical implementation, the interface is regarded either as a material surface or as a
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surface of discontinuity consisting of a continuous distribution of point particles or marker
points that are labeled permanently by two convected surface curvilinear coordinates(ξ, η).

Kinematic considerations require that the normal component of the marker-point velocity
be equal to the normal component of the velocity of the fluid, but the tangential component
may be arbitrary. The general form of the marker-point velocity is

U = (u · n)n+ w, (3.18)

whereu is the velocity of the fluid, andw is an arbitrary tangential velocity. Whenw = 0, the
marker points move with the fluid velocity normal to the interface, whereas whenw = P · u,
the marker points move with the whole of the fluid velocity.

The evolution of the concentration of animmisciblesurfactant that diffuses over the
interface but not into the bulk of the fluids is governed by the equation(

∂0

∂t

)
ξ,η

= w · ∇s0 −∇s · (0us)− 02κmu · n+ Ds∇2
s0, (3.19)

whereus = P · u is the component of the fluid velocity tangential to the interface,∇s ≡ P · ∇
is the surface gradient,Ds is the surfactant diffusivity in the plane of the interface, and
∇2

s ≡ ∇s · ∇s is the surface Laplacian [83, 110, 193, 196, 198]. Whenw = 0, the first term
on the right-hand side of (3.19) does not appear [175]. Expressions for the right-hand side
of (3.19) in surface curvilinear coordinates in terms of the contravariant components of
the velocity are given by Waxman [193], Zinemanas and Nir [212], Stone and Leal [180],
and Wonget al. [196]. If the surfactant is miscible into one of both of the bulk phases, an
additional flux expressed the net rate of sorption should be included on the right-hand side
of (3.19) [110, 61].

To complete the system of governing equations, we require a constitutive equation relating
the surface tensionγ to the surfactant concentration0. In the simplest approximation,
physically valid for small surfactant concentrations, we assume the linear law

γ = γ0

1− β

(
1− β

0

00

)
, (3.20)

where00 andγ0 are, respectively, a reference surfactant concentration and the corresponding
surface tension. The dimensionless physical constantβ = 00RT/γc expresses the sensitiv-
ity of the surface tension to the surfactant concentration;R is the ideal gas constant,T is
the absolute temperature, andγc is the surface tension of a clean interface that is devoid
of surfactants (e.g., Adamson [1]). More advanced constitutive equations developed in the
context of interfacial thermodynamics are discussed by Pawar and Stebe [118] and Johnson
and Borhan [61].

4. INTERFACES WITH ELASTIC PROPERTIES

Clean interfaces and interfaces hosting monolayers of surfactants exhibit isotropic surface
tension. Grossly contaminated interfaces, polymerized interfaces, and biological interfaces
consisting of lipids and proteins exhibit more involved mechanical properties. Multistruc-
tured interfaces, in particular, develop elastic tensions and bending moments similar to those
exhibited by thin elastic shells.
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For example, the interface between a red blood cell and the ambient plasma consists
of a lipid bilayer that is supported by a network of proteins, with an assortment of other
proteins also transversing the dual structure [40, 167, 107]. The bilayer is responsible
for incompressible behavior that preserves the surface area of any infinitesimal or finite
portion of the membrane during deformation. The cytoskeleton is responsible for elastic
behavior that causes the cell to return to the resting shape of a biconcave disk in hy-
drostatics. When a red blood cell is subjected to hydrodynamic stresses, the membrane
develops anisotropic elastic tensions and a position-dependent isotropic tension that en-
sures incompressible deformation. The excess area of a healthy membrane, combined with
its low modulus of elasticity, allows the cell to readily deform and squeeze through the
microcapillaries.

Membranes of vesicles consisting of lipid bilayers exhibit bending elasticity, that is,
resistance to bending from an equilibrium configuration [86]. If the bilayer is symmetric,
the equilibrium shape possesses zero mean curvature. More generally, bending elasticity
allows vesicles to obtain a great variety of shapes and to exhibit different modes of oscillation
in excitation [163].

The mathematical modeling of stresses and bending moments developing over membrane-
like interfaces draws heavily from the theory of thin shells [42, 47, 48, 111, 41, 108, 117,
14, 105, 85]. In this theory, the membrane is regarded as a curved two-dimensional medium
of small or zero thickness, and its mid-surface is described in parametric form in terms of
two-surface curvilinear coordinates. Three approaches are available for describing the mem-
brane deformation, for deriving equilibrium conditions, and for computing the stresses and
moments developing due to deformation. In the first approach, the membrane is regarded as
a thin sheet of a three-dimensional material, and asymptotic forms of the governing equa-
tions and boundary conditions are derived in the limit of zero thickness (e.g., Le Dret and
Raoult [76]). In the second approach, special assumptions are made regarding the defor-
mation of fibers that are normal to the midsurface of the membrane. In the third approach,
the third dimension is abandoned at the outset, and the membrane is regarded as a curved
two-dimensional medium.

The third approach has significant advantages: It circumvents certain inconsistencies
encountered in the first two approaches [20], and it is appropriate for molecular membranes
for which the assumption of continuum in the normal direction is not appropriate. Recent
work by Steigmann and Ogden [173, 174] and Steigmann [171, 172] has established a
rigorous theoretical foundation which allows the consistent computation of the membrane
tensions and bending moments from a strain energy function.

4.1. Stress Resultants and Bending Moments

Consider a membrane in a specified reference configuration, and label the point particles
that compose it by two convected surface curvilinear coordinates(ξ, η), so that a line of
constantη, a line of constantξ , and a line along the unit normal vectornR define a system
of right-handed but not necessarily orthogonal coordinates, as depicted at the top drawing
of Fig. 3. The positions of point particles in the reference state are denoted byxR(ξ, η).
Assume now that the membrane deforms, and denote the new positions of the point particles
byx(ξ, η). The developing in-plane stress resultants or elastic tensionsταβ , transverse shear
tensionsqα, and bending momentsmαβ are illustrated in Fig. 4. In the “membrane approx-
imation” of thin-shell theory, the transverse tensions and bending moments are neglected,
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FIG. 3. Schematic illustration of a three-dimensional membrane at the reference and the deformed state. Point
particles distributed over the membrane are marked permanently by two convected surface curvilinear coordinates
(ξ, η).

and only in-plane stress resultants are considered [24]. This approximation, however, is not
appropriate for polymerized capsules and biological membranes where bending moments
make an important, if not essential, contribution.

4.2. Interface Force and Torque Balances in Cartesian Coordinates

Describing the membrane tensions and bending moments in global Cartesian coordinates
facilitates the interfacing of the membrane mechanics to the hydrodynamics on either side
of an interface. In the Cartesian formulation, the domain of definition of the membrane
tensions and bending moments is extended into the whole three-dimensional space subject
to appropriate constraints, as follows [49, 85, 144].

The in-plane tensions are described in terms of the Cartesian tensorτ , so that the in-plane
tension exerted on a cross section of the membrane that is normal to the tangential unit vector
b is given byb · τ and, furthermore,n · τ = 0 andτ · n = 0; the last restriction ensures that
the tension lies in the tangential plane. For example, if an interface exhibits isotropic tension
γ , τ = γ P, whereP= I − nn is the tangential projection operator. The transverse shear
tension is described in terms of the Cartesian vectorq, so that the transverse shear tension
exerted on a cross section of the membrane that is normal to the tangential unit vectorb
is given byb · q and, furthermore,n · q = 0. The bending moments are expressed in terms
of the Cartesian tensorm, so that the bending moment vector exerted on a cross section
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FIG. 4. Depiction of (a) in-plane and transverse shear tensions (stress resultants), and (b) bending moments
developing around the edges of a patch on a three-dimensional membrane.

of the membrane that is normal to the tangential unit vectorb is given byn× (b ·m) and,
furthermore,n ·m = 0 andm · n = 0; the last restriction ensures that the moment vector
lies in the tangential plane.

Consider a patch of a membrane enclosed by the contourC, as illustrated in Fig. 2.
Assuming that the mass and thus the inertia of the membrane is negligible, we perform a
force balance over the patch to obtain∫

patch

(
σ (s) − σ (c)

) · n dS+
∫

C
b · (τ + qn) dl = 0, (4.1)

wheret is the unit vector tangential toC, b = t × n is the unit vector that is tangential to the
membrane and lies in a plane that is normal to the contourC, andl is the arc length alongC.
Using the divergence theorem to convert the contour integral into a surface integral on the
right-hand side of (4.1), and taking the limit as the size of the patch becomes infinitesimal,
we find that the jump in the hydrodynamic traction across the membrane is given by

1f ≡ (σ (s) − σ (c)
) · n = −(P · ∇) · (τ + qn) = −Trace[(P · ∇)(τ + qn)], (4.2)

(e.g., Pozrikidis [144]). The right-hand side of (4.2) expresses the surface divergence of the
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generalized elastic tension tensor in Cartesian coordinates [110]. The tangential derivatives
are taken with respect to two isometric orthogonal rectilinear coordinates that are tangential
to the membrane at the point where the divergence is evaluated.

An analogous torque balance with respect to the arbitrary pointxc requires∫
patch

(x− xc)×
[(

σ (s) − σ (c)
) · n]dS+

∫
C
(x− xc)× [b · (τ + qn)] dl

+
∫

C
n× (b ·m) dl = 0. (4.3)

Using the divergence theorem to convert the contour integral into a surface integral on the
right-hand side of (4.3), taking the limit as the size of the patch becomes infinitesimal, and
then using the force balance (4.2), we derive an expression for the transverse shear tension,

q = [(P · ∇) ·m] · P= Trace[(P · ∇)m] · P, (4.4)

and another expression for the antisymmetric part of the in-plane tension tensor,

τ − τ T = B ·m−mT · B, (4.5)

where the superscriptT denotes the matrix transpose, andB = ∇n is the symmetric Carte-
sian curvature tensor (e.g., [19, 193, 144]).

4.3. Interface Force and Torque Balances in Surface Curvilinear Coordinates

The Cartesian formulation described in Section 4.2 requires that the membrane tensions
and bending moments be extended into the whole space in an appropriate fashion. This
extension can be avoided by working in surface curvilinear coordinates (e.g., Barth`es-Biesel
[8]). To set up this formulation, we introduce the generally nonunit tangential vectors

tξ ≡ ∂x
∂ξ

, tη ≡ ∂x
∂η

(4.6)

and the corresponding arc length metric coefficients

hξ = |tξ |, hη = |tη|. (4.7)

The first fundamental formof the surface is defined as the square of the length of an
infinitesimal fiber whose end-points are separated by a vector corresponding to the in-
finitesimal coordinatesdξ anddη,

(dl)2 = aξξ (dξ)2+ 2aξη dξ dη + aηη(dη)2, (4.8)

where

aξξ = h2
ξ , aξη = aηξ = tξ · tη, aηη = h2

η. (4.9)

The surface area of a patch confined between twoξ or η segments with infinitesimal spans
dξ anddη is equal todS= √adξdη, wherea = h2

ξ h2
η − a2

ξη.
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Thesecond fundamental formof the surface is defined as the quadratic form

Q = −bξξ (dξ)2− 2bξη dξ dη − bηη(dη)2, (4.10)

where

bξξ = n · ∂tξ
∂ξ

, bξη = bηξ = n · ∂tξ
∂η
= n · ∂tη

∂ξ
, bηη = n · ∂tη

∂η
, (4.11)

n = tξ × tη/|tξ × tη| is the unit normal vector, andbαβ is the symmetric surface curvature
tensor. The normal curvature of the surface in the direction of an infinitesimal vector whose
end-points correspond to the infinitesimal incrementsdξ anddη is equal to the ratio of the
second to the first fundamental form of the surface.

Next, we introduce the surface contravariant components of the tension tensorτ denoted
by ταβ , the surface contravariant components of the transverse shear tension vector denoted
by qξ andqη, and the surface contravariant components of the bending moment tensor
m denoted bymαβ . Greek superscripts and subscripts stand forξ or η. Subject to these
definitions, the force equilibrium Eq. (4.2) takes the form

1f ≡ (σ (s) − σ (c)
) · n = 1 f nn+1 f ξ tξ +1 f ηtη, (4.12)

where

1 f n = −bαβταβ − qβ |β, 1 f ξ = −τβξ |β + bξ
αqα, 1 f η = −τβη|β + bη

αqα, (4.13)

[108, p. 165; 193, Eq. (3.5)]. Correspondingly, the torque equilibrium Eqs. (4.4) and (4.5)
take the form

qξ = mαξ |α, qη = mαη|α, τ ξη − τ ηξ = bξ
αmαη − bη

αmαξ (4.14)

where the mixed componentsbβ
α are related to the pure componentsbαβ by the relation

bβα = aβγ bγ
α (Møllmann [108, p. 165]; Waxman [193, Eq. (3.9)]. A vertical bar signifies

the covariant derivative with respect to the subscribed variable defined in terms of the
Christoffel symbols [5].

4.4. Interface Force and Torque Balance in Lines of Principal Curvatures

Considerable simplifications occur by referring to surface curvilinear coordinates whose
tangential vector at every point is oriented in the direction of the principal curvatures,
defined as thelines of principal curvature. A line of constantη, a line of constantξ , and
a line directed along the unit normal vectorn define a right-handed system of orthogonal
curvilinear coordinates. The directions of the stress resultants and bending moments are
defined in Fig. 4. In the case of an axisymmetric interface supporting axisymmetric tensions,
to be discussed in Section 5, the lines of principal curvatures are and remain the traces of
the membrane in meridional and azimuthal planes.

In surface curvilinear coordinates that are lines of principal curvatures, the decomposition
(4.12) takes the preferred form

1f ≡ (σ (s) − σ (c)
) · n = 1 f nn+1 f ′ ξeξ +1 f ′ ηeη, (4.15)

wheren is the unit normal vector pointing into the ambient fluid andeξ ≡ tξ /|tξ |, eη ≡
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tη/|tη| are unit tangential vectors. The normal and tangential components of the traction
discontinuity are given by

1 f n = κξ τξξ + κητηη − 1

hξ hη

[
∂

∂ξ
(hηqξ )+ ∂

∂η
(hξqη)

]
, (4.16)

1 f ′ ξ = − 1

hξ hη

[
∂

∂ξ
(hητξξ )+ ∂

∂η
(hξ τηξ )+ ∂hξ

∂η
τξη − ∂hη

∂ξ
τηη

]
− κξqξ , (4.17)

1 f ′ η = − 1

hξ hη

[
∂

∂ξ
(hητξη)+ ∂

∂η
(hξ τηη)− ∂hξ

∂η
τξξ + ∂hη

∂ξ
τηξ

]
− κηqη, (4.18)

whereκξ = −bξξ /h2
ξ andκη = −bηη/h2

η are the principal curvatures. Moreoever, expres-
sions (4.14) simplify to

qξ = 1

hξ hη

[
∂

∂ξ
(hηmξξ )+ ∂

∂η
(hξmηξ )+ ∂hξ

∂η
mξη − ∂hη

∂ξ
mηη

]
, (4.19)

qη = 1

hξ hη

[
∂

∂ξ
(hηmξη)+ ∂

∂η
(hξmηη)− ∂hξ

∂η
mξξ + ∂hη

∂ξ
mηξ

]
, (4.20)

τξη − τηξ = −κξmξη + κηmηξ , (4.21)

(e.g., Møllmann [108, p. 33]). In Section 5, we shall present the specific forms of these
expressions for axisymmetric membranes in cylindrical polar coordinates.

4.5. Surface Deformation

As a prelude to evaluating the elastic tensions, we refer to Fig. 3 and introduce the
three-dimensional Cartesian relative deformation gradient tensorF with components

Fi j =
(

∂xi

∂xR
j

)
ξ,η

. (4.22)

Let the infinitesimal vectordlR describe a small fiber that is either tangential or normal to
the membrane at the reference state. After deformation, the fiber has rotated and stretched
or compressed to its image described by

dl = F · dlR. (4.23)

The nine components of the relative deformation gradient tensorF may be evaluated from
knowledge of the images of two fibers that are tangential to the membrane at a point, and
the image of a fiber that is normal to the membrane at that point. In the present formulation,
the image of a fiber that is normal to the membrane is assumed to vanish, so that the
deformation of this fiber does not enter the computation of the elastic tensions explicitly,
but only implicitly by means of the deformation of the tangential fibers, and according to
constitutive laws expressing membrane material properties.

For the purpose of computing the elastic tensions, Eq. (4.23) is replaced by the equation

dl = FS · dlR, (4.24)
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where

FS ≡ F · (I − nRnR) (4.25)

is the relativesurfacedeformation gradient, and the superscript S stands for “surface.”
Clearly,nR is an eigenvector ofFS corresponding to a vanishing eigenvalue, which shows
thatFS is singular.

If dlR is a tangential fiber at the reference state, thendl is also a tangential fiber in the
deformed state, and this requiresn · dl = n · FS · dlR = 0. Since, however, the orientation
of dlR is arbitrary, it must be thatn · FS = 0, which suggests thatFS = (I − nn) · FS or

FS ≡ (I − nn) · F · (I − nRnR). (4.26)

Thus,n is an eigenvector of the transpose ofFS corresponding to the vanishing eigenvalue.
The polar decomposition theorem allows us to writeFS = R · U = V · R, whereR is an
orthogonal matrix expressing plane rotation, andU and V are the positive-definite and
symmetric right or left stretch tensors expressing pure deformation.

Following standard procedure in the theory of elasticity (e.g., [14, 47, 48]), we introduce
the positive-definite and symmetric surface left Cauchy–Green deformation tensor

V2 ≡ FS · FST
, (4.27)

where the superscriptT denotes the matrix transpose. The eigenvalues ofV2 are equal to
λ2

1, λ2
2, and 0, corresponding to the orthogonal tangential eigenvectorsv1, v2, and to the

normal vectorn. The eigenvectors ofV2 are also eigenvectors of the tension tensorτ .
In terms of the principal elastic tensionsτP

1 andτP
2 and the unit tangential eigenvectors

e1 = v1/|v1| and e2 = v2/|v2|, the part of the symmetric tension tensor is given by the
spectral decomposition

τ = τP
1 e1e1+ τP

2 e2e2. (4.28)

In the presence of bending moments, the tension tensor has an additional antisymmetric
component, as will be discussed later in this section.

4.6. Constitutive Equations for the Elastic Tensions

Next, we proceed to relate the tensions to the surface strains by means of a constitutive
equation. As a prelude, we consider a three-dimensional elastic medium and express the
force exerted on a small material patch of surface areadS that is perpendicular to the unit
normal vectorn in terms of the Eulerian stress tensorσ , in the familiar form

df = n · σ dS. (4.29)

Furthermore, we introduce thefirst Piola–Kirchhoff tensorT, also called theLagrange or
nominal stress tensor, and thePiola–Kirchhoff tensorS, defined by the relations

df = n · σ dS= nR · T dSR = nR · S · FT dSR, (4.30)

wherenR is the unit vector normal to the patch at a reference state,dSR is the corresponding
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surface area, and the superscriptT denotes the matrix transpose (e.g., [42, p. 438; 117,
p. 152]). The Eulerian stress tensorσ is related to the first Piola–Kirchhoff tensorT and to
the Piola–Kirchhoff tensorS by the equation

σ = 1

J
F · T = 1

J
F · S · FT , (4.31)

where J = Det(F) is the fractional volume of an infinitesimal volume element after the
deformation; for an incompresible material,J = 1. For a Green-elastic or hyperelastic
three-dimensional medium, the first Piola–Kirchhoff tensor and the Piola–Kirchhoff tensor
derive from a strain-energy functionW(F) by means of the relations

Ti j = ∂W

∂Fi j
, Si j = ∂W

∂Ei j
, (4.32)

whereE = 1
2(FT · F− I) is the Green (material or Lagrangean) strain tensor (e.g., [14; 42,

p. 449; 47, p. 7; 117, pp. 204–209]).
Considering now the two-dimensional analog of the preceding equations over the curved

surface of a membrane in the absence of bending moments, we replace Eq. (4.31) by

τ = 1

JS
FS · TS = 1

JS
FS · SS · FST

, (4.33)

whereJS = λ1λ2 is the fractional surface area of a material membrane patch after deforma-
tion, andTS andSS are the surface Piola–Kirchhoff tensors. The counterparts of relations
(4.32) are

TS
i j =

∂WS

∂FS
i j

, SS
i j =

∂WS

∂ES
i j

, (4.34)

whereES = 1
2(FST · FS− I) is the surface Green (material or Lagrangian) strain tensor.

Referring to local Cartesian coordinates with two axes parallel to the principal directions
of the tension tensor at a point, and using Eqs. (4.33) and (4.34), we find that the principal
tensions are given by

τP
1 =

1

λ2

∂WS

∂λ1
, τP

2 =
1

λ1

∂WS

∂λ2
. (4.35)

Expression (4.28) combined with Eqs. (4.35) provides us with a complete description of
the elastic tensions.

Kinematic constraints require that the surface strain-energy functionWS depend on the
surface deformation gradient only through strain invariants. Skalaket al. [168] introduced
the invariants

I S
1 ≡ λ2

1+ λ2
2− 2, I S

2 ≡ λ2
1λ

2
2− 1, (4.36)

in terms of which expressions (4.35) take the form

τP
1 = 2

λ1

λ2

∂WS

∂ I S
1

+ 2λ1λ2
∂WS

∂ I S
2

, τP
2 = 2

λ2

λ1

∂WS

∂ I S
1

+ 2λ1λ2
∂WS

∂ I S
2

, (4.37)
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Substituting expressions (4.37) into (4.28), we find

τ = 2

λ1λ2

(
λ2

1e1e1+ λ2
2e2e2

)∂WS

∂ I S
1

+ 2λ1λ2(e1e1+ e2e2)
∂WS

∂ I S
2

, (4.38)

or

τ = 2

λ1λ2

∂WS

∂ I S
1

V2+ 2λ1λ2
∂WS

∂ I S
2

(I − nn). (4.39)

Note that when∂WS/∂ I S
2 = 0, the tensions are isotropic.

Skalaket al. [168] proposed the following strain energy function for the membrane of a
red blood cell,

WS = B

4

(
1

2
I S2

1 + I S
1 − I S

2

)
+ C

8
I S2

2 , (4.40)

where B and C are physical constants with estimated values on the order ofB =
0.005 dynes/cm andC = 100 dynes/cm. The large magnitude of the constantC compared
to the magnitude ofB ensures that the membrane is nearly incompressible: a small deviation
of I S

2 from unity generates large elastic tensions.
Barthès–Biesel and Rallison [11] introduced the alternative strain invariants

31 ≡ ln λ1λ2 = 1

2
ln
(
I S
2 + 1

)
, 32 ≡ 1

2

(
λ2

1+ λ2
2

)− 1= 1

2
I S
1 , (4.41)

in terms of which expressions (4.35) take the form

τP
1 =

1

λ1λ2

(
∂WS

∂31
+ λ2

1
∂WS

∂32

)
, τP

2 =
1

λ1λ2

(
∂WS

∂31
+ λ2

2
∂WS

∂32

)
. (4.42)

Substituting expressions (4.42) into (4.28), we find

τ = 1

λ1λ2
(e1e1+ e2e2)

∂WS

∂31
+ (λ2

1e1e1+ λ2
2e2e2

)∂WS

∂32
, (4.43)

or

τ = 1

λ1λ2

[
∂WS

∂31
(I − nn)+ ∂WS

∂32
V2

]
. (4.44)

Note that when∂WS/∂32 = 0, the tensions are isotropic. In the limit of small deformations,
the strain energy function obtains the standard Mooney–Rivlin form

Ws = α131+ 1

2
(α1+ α2)3

2
1+ α3(32−31), (4.45)

whereα1, α2, andα3 are material constants (see Section 5).
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4.7. Tensions in a Thin Elastic Shell

It is instructive to compare the results derived in Section 4.6 with corresponding results
for the tensions developing in a thin shell of a three-dimensional incompressible elastic
material with uniform thicknessh (e.g., [47, pp. 156–159; 105, p. 399]). For this purpose,
we introduce thevolumestrain invariants

I V
1 ≡ λ2

1+ λ2
2+

1

λ2
1λ

2
2

, I V
2 ≡ λ2

1+ λ2
2+ λ2

1λ
2
2, (4.46)

and express the principal elastic tensions in terms of the volume strain energy functionWV

as

τP
1 =

2h

λ1λ2

(
λ2

1−
1

λ2
1λ

2
2

)(
∂WV

∂ I V
1

+ λ2
2
∂WV

∂ I V
2

)
,

(4.47)

τP
2 =

2h

λ1λ2

(
λ2

2−
1

λ2
1λ

2
2

)(
∂WV

∂ I V
1

+ λ2
1
∂WV

∂ I V
2

)
.

The Mooney–Rivlin strain-energy function is given by

WV = E

6h

[
(1− α)

(
I V
1 − 3

)+ α
(
I V
2 − 3

)]
, (4.48)

where E is the volume modulus of elasticity andα is a material parameter varying be-
tween 0 and 1;α = 0 corresponds to a linear neo-Hookean medium (e.g., Ogden [106,
p. 221]). In the limit of small deformations, expression (4.48) reduces to (4.45) with
α1 = 0, α2 = 2

3 E, α3 = 1
3 E, yielding WS = E

3 (32
1+32−31), as discussed by Barth`es–

Biesel and Rallison [11].

4.8. Constitutive Equations for Bending Moments

The bending moments developing in a hyperelastic membrane derive from a strain energy
function of appropriate strain and bending measures. Nonlinear theories of shells applicable
for finite deformations have been developed and reviewed by several authors including
Sanders [157], Budiansky and Sanders [20], Budiansky [19], Simmonds and Danielson
[166], Naghdi [111], Libai and Simonds [85], and more recently by Steigmann and Ogden
[173, 174], and Pozrikidis [144]. Waxman [193] and Steigmann [172] discuss applications
in hydrodynamics.

To illustrate the methods, we confine our attention to the most tractable case of infinitesi-
mal displacements, and refer to orthogonal curvilinear coordinates that are lines of principal
curvatures (e.g. Møllmann [108, p. 17]). Considering the displacement of a material point
particle over the membrane, denoted byv, we introduce the strain measures

εξξ = 1

hξ

∂x
∂ξ
· ∂v
∂ξ

, εηη = 1

hη

∂x
∂η
· ∂v
∂η

,

(4.49)

εξη = εηξ = 1

2hξ hη

(
∂x
∂η
· ∂v
∂ξ
+ ∂x

∂ξ
· ∂v
∂η

)
.

The measureεξξ expresses the elongation of a fiber in the direction of theξ axis, the measure
εηη expresses the elongation of a fiber in the direction of theη axis, andεξη is a measure of
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the deformation of an infinitesimal patch. Three corresponding measures of bending,κξξ ,
κηη, andκξη may be defined in terms of the rotation vectorω of a surface patch due to the
deformation (e.g., Møllmann [108, pp. 21, 25]). The strain and bending measures may now
be used to define the vectorial strain measure

h ≡ (εξξ , εξη, εηη, κξξ , κξη, κηη), (4.50)

and the surface strain energy function

WS = 1

2
h · D · h, (4.51)

where D is a positive-definite matrix expressing membrane material properties (e.g.,
Møllmann [108, p. 45]). For example, if the membrane is a thin shell of a three-dimensional
isotropic elastic material, the strain energy function may be approximated withLove’s first
approximationdescribing the infinitesimal displacement of a thin plate of thicknessh,

WS = 1

2

Eh

1− ν2

[
(1− ν)

(
ε2
ξξ + 2ε2

ξη + ε2
ηη

)+ ν(εξξ + εηη)
2
]

+ EB

2

[
(1− ν)

(
κ2

ξξ + 2κ2
ξη + κ2

ηη

)+ ν(κξξ + κηη)
2
]

(4.52)

whereEB = Eh3/[12(1− ν2)] is the plate modulus of bending,E is the volume modulus
of elasticity, andν is the Poisson ratio (e.g., Fung [42, p. 461]).

In terms of the strain energy function, the stress resultants and bending moments are
given by

τξξ = ∂WS

∂εξξ

, τξη = τηξ = 1

2

∂WS

∂εξη

, τηη = ∂WS

∂εηη

,

(4.53)

mξξ = ∂WS

∂κξξ

, mξη = mηξ = 1

2

∂WS

∂κξη

, mηη = ∂WS

∂κηη

.

For the strain energy function expressed by (4.52),

τξξ = Eh

1− ν2
(εξξ + νεηη), τξη = τηξ = Eh

1+ ν
εξη, τηη = Eh

1− ν2
(εηη + νεξξ ),

mξξ = 1

12

Eh3

1− ν2
(κξξ + νκηη), mξη = mηξ = 1

12

Eh3

1+ ν
κξη, (4.54)

mηη = 1

12

Eh3

1− ν2
(κηη+ νκξξ ).

It should be emphasized that the preceding formulae apply only for small interfacial
deformations. The recent work of Steigmann and Ogden [173, 174] establishes a framework
for computing bending moments for finite deformations. In the nonlinear formulation, the
tension tensorτ is decomposed into a symmetric part and a skew-symmetric part defined
in Eq. (4.5). Constitutive equations for the symmetric part and for the tensor of bending
moments are then developed in terms of a strain energy function of strain and bending
measures.



INTERFACIAL DYNAMICS FOR STOKES FLOW 273

FIG. 5. Elastic tensions and bending moments developing around the edges of a patch on an axisymmetric
membrane.

4.9. Axisymmetric Membranes

Nest, we turn our attention to axisymmetric membranes generated by rotating a line
around thex axis, as depicted in Fig. 5. Kinematics and dynamics are described in polar
cylindrical coordinates with axial positionx, distance from thex axis, and meridional angle
measured around thex axis with origin in thexyplane forming the triplet(x, σ, ϕ). The flow
inside and outside the capsule and the membrane tensions and bending moments developing
due to the deformation are assumed to be axisymmetric.

Following the formalism of thin-shell theory, we consider the mid-surface of the mem-
brane and introduce: (a) the azimuthal and meridional tensionsτs andτϕ , which are the
principal tensions of the in-plane stress resultants, (b) the transverse shear tensionq, and
(c) the azimuthal and meridional bending momentsms andmϕ , as illustrated in Fig. 5.

As a preliminary, we introduce the arc length along the trace of the membrane in a
meridional plane denoted bys and the unit vector that is tangential to the membrane and
lies in a meridional plane corresponding to a certain value of the meridional angleϕ, denoted
by ts. The unit vector normal to the interface,n, is directed into the ambient suspending
fluid, as illustrated in Fig. 5. The principal curvatures of the membrane in a meridional
plane and its conjugate plane are denoted byκs andκϕ .

Using fundamental relations of differential geometry, we find that if the radial position
of the membrane is described by the equation

σ = f (s) = g(x), (4.55)

then the principal curvatures are given by

κs = − f ′′√
1− f ′ 2

= − g′′

(1+ g′ 2)3/2
(4.56)

and

κϕ = 1

σ

∂x

∂s
= 1

σ

√
1− f ′ 2 = 1

σ

1√
1+ g′ 2

(4.57)
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(e.g., Pozrikidis [133, p. 162]). These expressions are consistent with Godazzi’s formula

κs = ∂

∂σ
(σκϕ), (4.58)

which allows us to compute one of the principal curvatures in terms of the other.

4.9.1. Force and torque balances.To compute the jump in the hydrodynamic traction
across the membrane, we consider a small section of the membrane that is confined between:
(a) two meridional planes passing through thex axis, and (b) two parallel planes that are
perpendicular to thex axis and enclose a small section of the interface in a meridional plane
with arc length1s. Performing a force balance over this section, we find

1f = (σ (s) − σ (c)
) · n = 1 f nn+1 f sts, (4.59)

where the normal jump is given by

1 f n = κsτs + κϕτϕ − 1

σ

∂

∂s
(σq), (4.60)

and the tangential jump is given by

1 f s = −∂τs

∂s
− 1

σ

∂ f

∂s
(τs − τϕ)− κsq. (4.61)

The function f (s), describing the shape of the membrane, was defined in Eq. (4.55). An
analogous torque balance shows that the transverse shear tension is related to the bending
moments by

q = 1

σ

∂

∂s
(σms)−mϕ

1

σ

∂ f

∂s
= 1

σ

∂ f

∂s

(
∂

∂σ
(σms)−mϕ

)
(4.62)

(e.g., Møllmann) [108, p. 33]. Substituting the right-hand side of (4.62) in place of the shear
tension in (4.60) and (4.61), we obtain relations in terms of the in-plane stress resultants
and bending moments alone.

It is reassuring to confirm that expressions (4.60)–(4.62) are consistent with the more
general expressions for three-dimensional membranes discussed earlier in this section. For
this purpose, we identify the surface curvilinear coordinateξ with the arc length measured
along the trace of the membrane in a meridional plane denoted bys, and the curvilinear
coordinateη with the meridional angleϕ, whereupon the arc length metric coefficients
are given byhξ = 1 andhη = σ . Since all tensions and moments have been assumed
axisymmetric, the principal axes coincide with the chosen curvilinear axes, and Eqs. (4.15)–
(4.20) reproduce Eqs. (4.60)–(4.62).

To evaluate the right-hand side of Eqs. (4.60)–(4.62), we require constitutive relations
for the elastic stress resultants and bending moments.

4.9.2. Constitutive equations for the elastic tensions.To derive relations for the elastic
tensions, we introduce the principal extension ratios

λs = ∂s

∂sR
, λϕ = σ

σR
, (4.63)
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where the superscript R denotes a reference state. If the area of the membrane is locally and
thus globally conserved,

λsλϕ = 1. (4.64)

To this end, we have two main choices reflecting the assumed nature of the membrane.
First, we may regard the membrane as a distinct two-dimensional hyperelastic medium,

and express the principal stress resultants in terms of the surface strain energy functionWS

using equations (4.35), whereτP
1 = τs, τP

2 = τϕ , λ1 = λs, andλ2 = λϕ . Alternatively, we
may regard the membrane as a thin sheet of a three-dimensional incompressible material
and work with the strain invariants shown in (4.46); the principal elastic tensions derive
from the volume strain energy functionWV using relations (4.47).

4.9.3. Constitutive equations for bending moments.To compute the bending moments
developing in a hyperelastic membrane, we introduce the bending measures of strain

Ks = λsκs − κR
s , Kϕ = λϕκϕ − κR

ϕ , (4.65)

where the superscript R denotes a reference configuration corresponding to the unstressed
shape where the bending moments vanish [151–154]. Zardaet al. [202] expressed the
bending moments in terms of the surface bending energy functionWB in a form that is
analogous to that shown in Eqs. (4.35), as

ms = 1

λϕ

∂WB

∂Ks
, mϕ = 1

λs

∂WB

∂Kϕ

. (4.66)

Love’s first approximation given by the last expression on the right-hand side of (4.52)
yields the bending energy function

WB = EB

2

(
K 2

s + 2νKsKϕ + K 2
s

)
, (4.67)

whereEB andν are physical constants expressing membrane material properties.

5. INCOMPRESSIBLE INTERFACES

Biological, membranes consisting of lipid bilayers have a large modulus of dilatation; that
is, they behave like two-dimensional nearly-incompressible fluids. To account for the mem-
brane incompressibility, a position-dependent isotropic tension playing the role of surface
pressure may be added to the in-plane stress resultants. The introduction of an additional
surface function furnishes an additional degree of freedom that allows the satisfaction of
the incompressibility constraint at every point over the membrane.

In global Cartesian coordinates, the incompressibility constraint is expressed by the
equation

θ = 1

hS

DhS

Dt
= (P · ∇) · u = 0, (5.1)

whereθ is the rate of surface dilatation,D/Dt is the material derivative,hs is the surface
metric associated with the convected surface curvilinear coordinates, andu is the fluid
velocity [162].
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In surface curvilinear coordinates(ξ, η), the incompressibility constraint (6.1) takes the
form

θ = 1

hS

DhS

Dt
= 1

hS
n ·
(

∂u
∂ξ
× ∂x

∂η
+ ∂x

∂ξ
× ∂u

∂η

)
= (P · ∇) · (P · u)+ 2 κmu · n = 0= uξ |ξ + uη|η + 2 κmu · n = 0, (5.2)

whereκm is the interface mean curvature [133, p. 21; 193, Eq. 3.2b; 208]. A vertical bar sig-
nifies the covariant derivative taken with respect to the subscribed variable, defined in terms
of the Christoffel symbols (e.g., [5]). Condition (5.2) also follows from the convection–
diffusion equation for a uniformly distributed insoluble surfactant, equation (3.19), by
requiring that the surfactant concentration at the position interfacial point particles moving
with the fluid velocity remains constant in time. The numerical implementation of (5.2) for
capsules deforming under the influence of a simple shear flow was discussed by Zhou and
Pozrikidis [208].

Considering axisymmetric flow, we express the azimuthal and meridional tensions in
terms of a mean and a deviatoric component; the latter derives from a strain energy function.
Pozrikidis [126] simulated the transient deformation of axisymmetric capsules enclosed by
incompressible elastic membranes evolving under the influence of an elongational flow.
The distribution of the isotropic membrane tension was computed using the incompress-
ibility constraint (5.2), and the deviatory elastic tension was computed using a constitutive
equation. RequiringD(λsλϕ)/Dt = 0, whereD/Dt is the material derivative, we obtain a
scalar constraint on the distribution of the membrane velocityu,

ts · ∂u
∂s
+ 1

σ
u · eσ = 0, (5.3)

wherets is the unit vector tangential to the membrane in a meridional plane, andeσ is the
unit vector normal to thex axis. It can be shown by straightforward rearrangement that
condition (5.3) is consistent with the more general expressions (5.1) and (5.2).

In the case of two-dimensional flow, the incompressibility constraint simplifies to

t · ∂u
∂l
= ∂(u · t)

∂l
+ κu · n = 0, (5.4)

wheret is the unit vector tangential to the membrane,l is the arc length measured in the
direction of t, andκ is the curvature of the membrane in thexy plane. The numerical
implementation of (5.4) is discussed by Zhou and Pozrikidis [208].

6. VISCOUS INTERFACES

Impurities, surfactants, adsorbed macromolecules, and molecular layers generated by
chemical reactions are responsible for interfaces that behave like two-dimensional
Newtonian or viscoelastic Boussinesq fluids (e.g., [161, 193, 10, 170, 36, 110]). Scriven
[161] proposed a constitutive equation for in-plane Newtonian interfacial tensions in sur-
face curvilinear coordinates. Secomb and Skalak [162] observed that the coupling of the
interfacial dynamics to the hydrodynamics on either side of the interface is facilitated by
working in global Cartesian coordinates and expressed the Newtonian surface tension tensor
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in the form

τ = γ P+ (κ − ε) θ P+ 2 ε ES, (6.1)

whereθ is the rate of dilatation given in Eqs. (5.1) and (5.2),P= I − nn is the tangential
projection operator,ε andκ are two physical constants expressing the interface shear and
dilatational viscosity, andES is the Cartesian surface rate of deformation tensor given by

ES
i j =

1

2
Pik Pjl

(
∂uk

∂xl
+ ∂ul

∂xk

)
. (6.2)

The two projections on the right-hand side of (6.2) remove derivatives of the velocity in
the direction normal to the interface, as well derivatives of the normal component of the
velocity in directions that are tangential to the interface. Thus, the right-hand side of (6.2)
may be computed from knowledge of the velocity distribution over the interface. The rate
of surface dilationθ is given by the trace ofES.

Performing a force balance over a small interfacial patch, and taking the limit as the size
of the patch becomes infinitesimal, we find that the jump in the hydrodynamic traction is
given by

1f̃ = −(P · ∇) · τ . (6.3)

Substituting this expression into the boundary-integral equation, we obtain an integral equa-
tion of a nonstandard kind for the interfacial velocity [130].

7. COMPLEX INTERFACES AND ALTERNATIVE FORMULATIONS

We have discussed the mathematical modeling of membrane tensions and bending mo-
ments in the context of continuum mechanics, working under the auspices of the theory
of thin shells. The macromolecular nature of certain interfaces suggests that an alternative
formulation that models a membrane as a network of generally viscoelastic links defined
by computational nodes might be more appropriate. For example, Hansenet al. [54–56]
developed a network model based on random Delaunay triangulation representing the ery-
throcyte membrane cytoskeleton and obtained estimates for the macroscopic elastic shear
modulus and modulus of areal expansion.

An alternative method of computing the jump in the hydrodynamic traction across an
interface hinges on the concept of configurational energy playing the role of an effective
Hamiltonian (e.g., [2, 21, 112]). For example, the instantaneous configurational energy of
a membrane consisting of a symmetric lipid bilayer may be expressed in terms of surface
integrals in the form

E =
∫

Membrane
τ dS+ 2κB

∫
Membrane

κ2
m dS, (7.1)

whereκB is a physical constant expressing the bending stiffness,κm is the membrane mean
curvature, andτ is a position dependent in-plane tension developing to ensure membrane
incompressibility [163]. Let the instantaneous shape of the membrane be described by the
equationG(x) = 0, whereG is a suitable function, and express the interface energy in the
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form E = E(G(x)) evaluated atG(x) = 0, whereE(·) is a nonlinear integro-differential
functional defined over all possible membrane configurations. The jump in the hydrody-
namic traction across the membrane may be found using the principle of virtual displace-
ments (e.g., [112]).

Krauset al. [69] discretized the membrane of a vesicle into a collection of flat triangles
defined by computational nodes, represented the flow by a superposition of elementary
flows induced by point forces located at the triangle vertices, and computed the strength of
the point force located at thej th node, denoted byx( j ), by the equation

F ( j )
i = −

∂E

∂x( j )
i

, (7.2)

which is the simplest implementation of the principle of virtual displacements. Although
computationally convenient, discrete models are sensitive to the method of surface dis-
cretization–flat versus curved triangulation.

Boeyet al.[15] and Discheret al.[33] developed a coarse-grained molecular model that
permits the direct coupling of classical hydrodynamics to the dynamics of the molecular
layers and networks comprising the membrane, in a manner that circumvents the explicit
use of a macroscopic constitutive equation (see also Seifert [163]).

8. INTERFACIAL DYNAMICS

An integrated numerical procedure for simulating the evolution of interfaces using a
boundary-integral method involves three main tasks: (a) parametric representation of the
interfaces; (b) evaluation of an integral representation or solution of an integral equation
for the interfacial velocity or for the density of a hydrodynamic potential; and (c) time
integration of the equations governing the motion of interfacial marker points and possi-
bly the evolution of dynamically relevant surface functions. In the case of temperature- or
surfactant-concentration-dependent surface tension, dynamically relevant surface functions
include the temperature and the concentration of a surfactant. In the case of an interface
consisting of an elastic membrane, dynamically relevant surface functions include the co-
ordinates and the curvature of the interface at the position of marker points in a reference
configuration. The overall numerical method is described as the method of interfacial dy-
namics for Stokes flow.

The implementation of the aforementioned tasks is considerably faciliated by the use of
piecewise numerical interpolation underlying the formalism of boundary-element methods.
In the case of two-dimensional or axisymmetric flow, an interface is represented by a col-
lection of planar elements in the form of straight segments, circular arcs, parabolic, cubic,
cubic-spline, or higher order elements, all defined by consecutive interfacial nodes. The
cubic-spline elements are described in parametric form by means of cubic-spline interpola-
tion for the node coordinates, where the interpolation is done with respect to the polygonal
or curved arc length [136]. The geometrical properties of the interface including the normal
vector and the curvature follow readily from the local representation.

In the case of three-dimensional flow, an interface is typically represented by an unstruc-
tured grid of three-dimensional elements defined by groups of interfacial nodes. Compared
to a structured grid defined in global curvilinear coordinates, the unstructured grid has two
advantages: the local curvilinear coordinates over each element are nonsingular, whereas
the structured grid may have singular points; and the element shape and size may be readily
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controlled to enhance the spatial resolution at selected regions. The unstructured discretiza-
tion is amenable to the meritorious finite-volume and finite-element formulations for solving
integral and differential equations over evolving domains. Flat and curved riangular ele-
ments are particularly attractive because of their ease of implementation. A closed grid
of triangles may be readily generated by successively subdividing a regular octahedron or
icosahedron into four descendant elements, and subsequently deforming the elements to
obtain a desired shape [139].

8.1. Computation of the Normal Vector and Mean Curvature

The unit normal vector and mean curvature of a two-dimensional or axisymmetric inter-
face follow readily from the parametric representation using standard formulae of differen-
tial geometry (e.g., [133]).

A simple method for computing the unit normal vector and mean curvature of a three-
dimensional interface is by evaluating a contour integral. Consider an interfacial patchD
enclosed by the contourC and containing the pointx0, and introduce the unit vectorb that
is tangential to the patch and lies in a plane that is normal toC at a point, as shown in Fig. 2.
If t is the unit vector tangential toC, andn is the unit vector normal to the interface, then
b = t × n. In the limit as the contourC shrinks to the pointx0, the reduced vectorial line
integral

a(x0) ≡ 1

SD

∫
C

b(x) dl(x), (8.1)

tends to the vector 2κm(x0) n(x0), whereκm is the mean curvature of the interface at
the pointx0, and SD is the surface area ofD. The unit normal vectorn(x0) follows by
normalizing the vectora(x0), possibly switching its direction to ensure that has a desired
orientation; the mean curvature follows from the inner producta(x0) · n(x0) ≡ 2 κm(x0)

(e.g., [127, 128]). In practice, the contourC is identified either with jointed sections of
surface curvilinear coordinates defining a surface element, or with groups of selected edges
of boundary elements in the vicinity of a point.

When an interface has been discretized into flat triangles, the computation of the normal
vector and mean curvature requires interpolating beyond the domain of the individual
elements. Rallison [148] described the shape of an interface in the vicinity of a node by
the equationf (x) = 0, expanded the functionf (x) in a Taylor series, truncated the series
at the quadratic term, and computed the unknown coefficients using a numerical method.
Zinchenkoet al. [210, 211] approximated the interface in the vicinity of a node with a
paraboloid defined in local Cartesian coordinates with one axis normal to the interface at
the node. The coefficients of the local paraboloid were computed by minimization, and the
normal vector was improved by iteration; upon convergence, the mean curvature followed
from standard expressions. Zinchenko found that the contour integration method discussed
in the preceding paragraph suffers from serious flaws even for simple ellipsoidal shapes. An
improved version of the local paraboloidal approximation that produces the normal vector
and the mean curvature simultaneously by global minimization was developed recently by
Zinchenko and Davis [209]. Tests showed that the global method produces more accurate
normal vectors, but not necessarily more accurate mean curvatures.

When an interface has been discretized into quadratic triangular element defined by six
nodes, the normal vector, directional normal curvatures, and mean curvature follow readily
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from the local parametric representation of the individual elements (Pozrikidis [127, 136,
139]; Kennedyet al.[65]). The mean curvature, in particular, may be computed as the ratio
of the first to the second fundamental form of the surface defined in Eqs. (4.8) and (4.10).
The following recipe gives the best results: (a) compute the normal vector at the nodes
of each triangle using the local triangle representation; (b) average the components of the
normal vector over all triangles sharing a node; (c) normalize the averaged normal vector;
(d) compute the surface gradient of the averaged normal vector over each triangle using
the local triangle representation; (e) compute the mean curvature at a specified point over a
triangle as the ratio of the first to the second fundamental form of the surface. When a sphere
has been discretized into eight quadratic triangles, the method just described produces the
mean curvature without any numerical error!

8.2. Computation of the Singular Single-Layer Potential

Two distinct but somewhat related issues arise in the computation of the single-layer
potential: (a) the accurate evaluation of the jump in interfacial traction1f, and (b) the
accurate evaluation of the singular integral. The two issues are related in the sense that
specialized methods for computing the single-layer potential may be devised for particular
expressions for1f.

In the case of two-dimensional or axisymmetric flow, the kernel of the single-layer
potential exhibits a logarithmic singularity which may be integrated by several methods,
including the use of a Gaussian quadrature for a log-singular (e.g., [136]). In the case of three-
dimensional flow, the kernel of the single-layer potential exhibits a weak singularity that
behaves as 1/r . Quadratures for integrating the single-layer potential over planar triangles
and rectangles have been developed by Pinaet al. [119]. A recent monograph edited by
Sladek and Sladek [170] reviews methods for computing weakly and selected strongly
singular integrals in boundary-element implementations. In this section, we discuss selected
strategies pertinent to the integral equations of Stokes flow.

8.2.1. Isolating the jump in traction.Let us consider the single-layer potential over an
interfacial patchD that is enclosed by the closed contourC, and introduce the single-layer
potential

I S
j (x0) ≡

∫
D

Gi j (x, x0) 1 fi (x) dS(x). (8.2)

Implementing a trapezoidal-like approximation to decouple the product of the two functions
in the integrand, we write

I S
j (x0) ' 1

SD

∫
D

1 fi (x) dS(x)×
∫

D
Gi j (x, x0) dS(x), (8.3)

where SD is the surface area ofD. Assuming that the interface develops in-plane and
transverse shear tensions, as discussed in Section 4, we perform a force balance over the
patch to find that the first integral on the right-hand side of (8.3) is given by∫

D
1f(x) dS(x) = −

∫
D

b(x) · [τ(x)+ q(x) n(x)] dl(x). (8.4)

For example, if the interface exhibits uniform isotropic tensionγ, τ = γ P and q = 0,
whereP= I − nn is the tangential projection operator; in this case,b · τ = γ b.
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The computation of the right-hand side of (8.4) requires the evaluation of the in-plane
surface tension tensorτ and transverse shear tension vectorq along the contourC. In
contrast, the computation of1f in the integrand on the left-hand side of (8.4) requires the
evaluation of the surface divergence or gradient ofτ andq over D, which can be a serious
source of numerical error. The approximation (8.3) was implemented by Pozrikidis [129]
for interfaces with isotropic tension, and by Pozrikidis [131], Ramanujan and Pozrikidis
[150], and Pozrikidis [144] for interfaces developing in-plane and transverse shear tensions.

8.2.2. Integration of the normal component of1f. The jump in traction1f may be
decomposed into a normal and a tangential component, as

1f = χ n+ P ·1f, (8.5)

whereχ = n ·1f. Each component may then be integrated independently using different
methods. For example, if an interface exhibits uniform tensionγ , χ = γ 2κm whereκm is
the mean curvature, and the tangential component vanishes.

If an interface is closed, the single-layer integral associated with the normal component
of 1f may be removed by use of an integral identity: conservation of mass for the flow due
to a point force allows us to write∫

D
Gi j (x, x0) χ(x) ni (x) dS(x) =

∫
D

Gi j (x, x0) [χ(x)− χ(x0)] ni (x) dS(x). (8.6)

The integrand on the right-hand of (8.6) is nonsingular but not entirely regular. A Taylor
series expansion shows that as the integration pointx approaches the evaluation pointx0,
the integrand tends to a finite value that depends on the orientation of the vectorx− x0. In
practice, however, this integral may be computed with adequate accuracy using an integra-
tion quadrature for regular integrands (e.g., Pozrikidis [136, pp. 370–383]). An analogous
method for removing the singularity of the tangential componentP ·1f by use of an integral
identity is not available.

8.2.3. Direct numerical computation of the single-layer integral.In a typical boundary-
element implementation, a three-dimensional interface is discretized into a collection of
boundary elements, and the single-layer potential is computed over the individual elements.
When the evaluation pointx0 lies in the interior, along the edges, or at the vertices of a
boundary element, then as the integration pointx approachesx0, the integrand exhibits a
weak 1/|x− x0| singularity, and the element is classified as “singular.”

To compute the single-layer potential over a singular elementE, we write

I S
j (x0) =

∫
D

Gi j (x, x0)[1 fi (x)−1 fi (x0)] dS(x)+1 fi (x0)

∫
D

Gi j (x, x0) dS(x). (8.7)

As the integration pointx approaches the evaluation pointx0, the integrand of the first
integral on the right-hand side of (8.7) tends to a finite value that depends on the orientation
of the vectorx− x0, and the integral may be computed with adequate accuracy using a
standard quadrature.

When the elements are flat triangles, and the pointx0 is a vertex, the second integral on
the right-hand side of (8.7) may be computed by analytical methods [27, 148]. A practical
alternative is to use the polar integration rule, which amounts to integrating in local polar
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coordinates using a double Gauss–Legendre quadrature (e.g., Pozrikidis [136, pp. 377–
388]). A third option is to use a Gauss quadrature for two-dimensional integrals with a 1/r
singularity developed by Pinaet al. [119].

To compute the single-layer potential over an element that is defined by more than three
nodes, such as a curved triangle defined by six nodes, we break up the element into a
collection of flat triangles according to the location of the singular pointx0, and then either
perform the integration analytically, use the polar integration rule for singular flat triangles
described earlier in this section, or employ an integration quadrature. For example, if the
evaluation point lies at the vertex of aquadratic triangle defined by six nodes, the quadratic
triangle is broken up into one singular flat triangle and three nonsingular flat triangles.

8.3. Computation of the Principal-Value Integral of the Double-Layer Potential

In the case of two-dimensional or axisymmetric flow, the integrand of the principal-value
integral of the double-layer potential is nonsingular and may be computed using a standard
numerical method. In the case of three-dimensional flow, the 1/|x− x0| singularity of the
principal value integral over aclosedsurface may be removed using a vector identity, writing

I D
j (x0) ≡

∫ PV

D
qi (x) Ti jk (x, x0) nk(x) dS(x)

=
∫

D
[qi (x)− qi (x0)] Ti jk (x, x0) nk(x) dS(x)− 4π qj (x0), (8.8)

whereq is the density of the double-layer potential (e.g., Pozrikidis [127]). As the integration
point x approaches the evaluation pointx0, the integrand on the right-hand side of (8.8)
tends to a finite value that depends on the orientation of the vectorx− x0; the integral may
be computed with adequate accuracy using a standard quadrature. A similar regularization
may be performed when the pointx0 lies close to, but not precisely on the domain of
integrationD (Loewenberg & Hinch [91, 92]; Zinchenkoet al. [209, 210]; Zinchenko &
Davis [211]).

When the domain of integration is not closed, the computation of the double-layer po-
tential becomes more challenging. Use of the polar integration rule to integrate over a flat
triangle, as discussed earlier for the single-layer potential, removes the 1/|x− x0| singular-
ity and allows the application of a standard quadrature. Because, however, the kernelTi jk nk

of the free-space Green’s function vanishes over a flat element hosting the singular point, ne-
glecting the surface curvature introduces a significant numerical error on the order ofκm δ,
whereκm is the mean curvature andδ is the element size. The implementation of the polar
integration rule over curved elements is cumbersome and has not been attempted. One way
to bypass these difficulties is to introduce the closure of an open interface, and then compute
the nonsingular double-layer integral over the extended boundary using a quadrature [199].
Other methods are discussed in the articles collected by Sladek and Sladek [170].

8.4. Computation of the Principal Value of the Point-Source Integral

We consider now the computation of the principal value of the first integral on the right-
hand sides of (3.12), named the point-source integral. This integral also arises in the study
of the self-induced motion of vortex sheets with particular reference to the Biot–Savart
integral (e.g., Pozrikidis [133]).
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Considering, for simplicity, an interface with constant surface tensionγ , we define the
point source potential

I PS
j (x0) =

∫ PV

D
pj (x, x0) dS(x). (8.9)

As the integration pointx approaches the evaluation pointx0, the integrand on the right-
hand side of (8.9) exhibits a strong singularity, behaving like 1/|x− x0|2. Our objective is
to reduce the order of the singularity by use of integral identities.

For the purpose of illustration, we confine our attention to the free-space pressure
Green’s function given bypj (x, x0) = 2 x̂ j /|x̂|3, wherex̂ ≡ x− x0. An arbitrary pressure
Green’s functions may be decomposed into a singular part associated with the free-
space Green’s function and a regular complementary part, and the latter may be integrated
using standard numerical methods.

To simplify the notation, we writepj = −8π∇GL, whereGL is the free-space Green’s
function of Laplace’s equation given byGL(x, x0) = 1/(4π |x̂|), Substituting this form into
(8.9), we findIPS(x0) = −8π IGL(x0), where

IGL(x0) ≡
∫ PV

D
∇GL(x, x0) dS(x) = −

[
∇0

∫
D

GL(x, x0) dS(x)

]PV

(8.10)

is the principal value of the gradient of the Laplace potential. The derivatives of the gradient
∇0 on the right-hand side of (8.10) are taken with respect tox0. The compute the gradient
of the Laplace potential, we may proceed in two ways.

In the first approach, we decompose the kernel∇GL into its normal and tangential
components, and write

IGL(x0) =
∫

D
[n(x)− n(x0)] n(x) · ∇GL(x, x0) dS(x)+ n(x0)

∫
D

n(x) · ∇GL(x, x0) dS(x)

+
∫ PV

D
P(x) · ∇GL(x, x0) dS(x), (8.11)

whereP= I − nn is the tangential projection operator. As the integration pointx approaches
the evaluation pointx0, the kernel of the first integral on the left-hand side of (8.11) tends
to a finite value that depends on the direction ofx− x0. The integral may be computed with
adequate accuracy using a standard integration quadrature. Conservation of mass for the
flow due to point sink requires that the second integral on the left-hand side is equal to−1/2.
Pozrikidis [142] shows that the third integral on the right-hand side of (8.12) is equal to∫

D
2κm(x) GL(x, x0) n(x) dS(x), (8.12)

whereκm is the mean curvature ofD. Since the kernel of this integral diverges only weakly as
1/|x− x0|, the integral may be computed with adequate accuracy using a numerical method
that is analogous to that described earlier for the single-layer Stokes potential involving,
for example, the polar integration rule.

In the second approach developed by Zinchenko and co-workers [209–211], the gradient
of the Laplace integral is decomposed into a normal and a tangential component, and each
component is treated individually. To compute the principal value of the normal component,
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we express it in the form

n(x0)[n(x0) · IGL(x0)] = n(x0)

∫
D

[n(x)+ n(x0)] · ∇GL(x, x0) dS(x)

− n(x0)

∫ PV

D
n(x) · ∇GL(x, x0) dS(x). (8.13)

As the integration pointx approaches the singular pointx0, the kernel of the first integral
on the left-hand side of (8.13) tends to a finite value that depends on the direction ofx− x0

(Zinchenkoet al. [210, p. 1503]). In fact, when the integration domain is a sphere, this
integrand vanishes identically at every point. A formal proof that involves expanding the
position and normal vector in Taylor series with respect to surface curvilinear coordinates
was provided by Zinchenko to this author in personal communication. Conservation of mass
for the flow due to point sink requires that the second integral on the left-hand side of (8.13)
is equal to−1/2.

To compute the tangential component of the gradient of the Laplace potential, we may
proceed in two ways. In the indirect approach, we evaluate the last integral of the Green’s
function in (8.10) over the interface, and then compute its tangential gradient by numerical
differentiation, as discussed by Baker [6] and Bakeret al.[7] and implemented by Pozrikidis
[142, 143]. In the direct approach, we express the tangential component in the form

n(x0)× [IGL(x0)× n(x0)] =
∫

D
n(x0)× [∇GL(x, x0)× n(x0)] dS(x)

=
∫

D
n(x0)× {∇GL(x, x0)× [n(x0)− n(x)]} dS(x)

− n(x0)×
∫

D
n(x)×∇GL(x, x0) dS(x). (8.14)

Expressing the outer triple product within the first integral on the right-hand side of (8.14) in
terms of two inner products, we find that, as the integration pointx approaches the singular
point x0, the kernel tends to a finite value that depends on the direction ofx− x0 [211].
Using the divergence theorem to convert the second integral on the right-hand side of (8.14)
to a volume integral over the region enclosed byD, we find that this integral vanishes.

Combining Eqs. (8.13) and (8.14), we derive an expression for the principal value of the
gradient of the Laplace potential in terms of a nonsingular integral,

IGL(x0) = n(x0)

∫
D

[n(x)+ n(x0)] · ∇GL(x, x0) dS(x)

+
∫

D
n(x0)× {∇GL(x, x0)× [n(x0)− n(x)]} dS(x)+ 1

2
n(x0) (8.15)

or

IGL(x0) =
∫

D
{[n(x0)n(x)+ n(x)n(x0)] · ∇GL(x, x0)

+ [1− n(x0) · n(x)] ∇GL(x, x0)} dS(x)+ 1

2
n(x0). (8.16)

The right-hand side of (8.16) involves a nonsingular but multivalued integrand.
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Considering now the single-layer potential (3.10) for constant surface tensionγ , we use
(8.16) to express it in the form

I s
j (x0) = 4πγ

∫
D

{
nj (x0) [n(x) · ∇GL(x, x0)] + nj (x) [n(x0) · ∇GL(x, x0)]

+ [1− n(x0) · n(x)]
∂GL

∂xj
(x, x0) nk(x)

− 1

8π
Ti jk (x, x0) [ni (x)+ ni (x0)] nk(x)

}
dS(x). (8.17)

In the case of the free-space Green’s function, we recover expression (2.11) of Zinchenko
et al. [211] obtained using a somewhat different method.

8.5. Iterative Solution of the Integral Equations

If all interfaces are closed, the integral equations of the second kind may be solved by
the method of successive substitutions, as long as none of the fluids is inviscid. The rate of
convergence may be improved by removing the marginal eigenvalues using the method of
Weilandt deflation developed by Kim and Karrila [66] and discussed by Pozrikidis [127].
Zinchenkoet al. [210] found that, even with eigenvalue removal, the rate of convergence
becomes prohibitively slow when two interfaces are separated by a small distance, and
implemented the method of biconjugate gradients as an alternative.

8.6. Mesh-Control and Regridding

In a typical numerical implementation, a three-dimensional interface is regarded as being
composed of a continuous distribution of marker points that are labeled permanently using
two “convected” surface curvilinear coordinates(ξ, η). If the positions of the marker points
are described by the functionX(ξ, η, t), then the motion of the marker points is governed
by the differential equation defining the marker point velocityU = dX/dt, which is to be
integrated in time subject to a specified initial condition. Kinematic considerations require
that the normal component of the marker point velocity be equal to the normal component
of the velocity of the fluid, but the tangential component may be arbitrary. The general form
of the marker point velocity is given in Eq. (3.18).

The choice of the marker point velocity is exercised with the practical objective of
preventing point clustering that may lead to numerical instabilities and deter the spatial
resolution. For example, if an interface is stationary, it is appropriate to set the tangential
marker point velocity to zero,w = 0, so that the marker points remain stationary. When,
on the other hand, the interface translates with velocityUTR without deformation, it is
appropriate to setw = P · UTR so that the marker points retain their relative position.

A dynamical simulation involves the computation of the motion of a finite collection of
marker points defining the vertices of boundary elements. Loewenberg and Hinch [91, 92]
and Cristiniet al.[26] developed a method of dynamically adjusting the tangential velocity
of the marker points over the interfaces of two interacting drops in simple shear flow.
Coulliette and Pozrikidis [25] used a variation of their method to simulate the motion of a
file of drops in Poiseuille flow. Zinchenkoet al. [210, 211] and Zinchenko and Davis [209]
found that an alternative method, “passive mesh stabilization,” performs better for more
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FIG. 6. Deformation of a low-viscosity liquid drop in infinite simple shear flow computed by the method of
interfacial dynamics. Interfacial regridding is done with the advancing front method [72].

general types of motion. Their algorithm is based on the idea of computing the tangential
velocity of each node by minimizing a carefully devised objective function defined with
respect to the distances between nodes, the maximum mean curvature of the interface, and
the element surface areas.

Kwak and Pozrikidis [72] implemented regridding in physical space using the advancing
front method. The advantage of this approach is that the density of the interfacial elements
may readily be increased or descreased at regions of high or low curvature, while the size
of the triangles and their skewness is kept within specified thresholds, independent of the
motion. Stages in the deformation of a low-viscosity liquid drop subject to an infinite simple
shear flow simulated using this method are shown in Fig. 6.

8.7. Smoothing

Dynamical simulations of interfacial motion suffer from numerical instabilities whose
severity depends on the type of flow and physical properties of the interface. Since interfacial
dynamics in Stokes flow is inherently well posed, as opposed to vortex-sheet dynamics in
inviscid flow, which is inherently ill posed, the instabilities may be eliminated by improving
the accuracy of the numerical method, by decreasing the size of the time step, or by doing
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both. In practice, however, the higher the spatial resolution, the smaller the time step for
a stable simulation, and this inflates the cost of the simulation. A practical alternative
for carrying out extended simulations is to filter out numerical oscillations by smoothing
the position of marker points and possibly dynamically active fields over the interfaces.
Smoothing may be interpreted in two complementary ways: local or global polynomial or
Fourier spectrum expansion followed by truncation; and the implementation of an evolution
law for the smoothed function incorporating second- or fourth-order diffusion.

Smoothing two-dimensional and axisymmetric shapes and functions defined over them
can be done efficiently using formulae derived by Longuet–Higgins and Cokelet [94] and
Dold [34]. Numerical methods for smoothing three-dimensional shapes described by tri-
angulation are less well developed. Zinchenkoet al. [211] and Zinchenko and Davis [209]
eliminated surface irregularities by adding to the normal component of the velocity an ad-
ditional term involving the local mean curvature or the surface Laplacian of the third power
of the mean curvature. Pozrikidis [143] implemented smoothing by mapping a closed in-
terface onto the unit sphere, expanding the smoothed function in surface harmonics defined
in terms of associated Legendre functions, truncating the spectrum of the expansion, and
then reproducing the surface function from the truncated expansion.

8.8. Spectral-Element Methods

Occhialiniet al.[116], Muldowney and Higdon [109], and Pozrikidis [141] implemented
spectral-element orthogonal-collocation methods for solving the integral equations of two-
and three-dimensional Stokes flow. In the case of three-dimensional flow considered by
Higdon and coworkers, the elements have rectangular shapes.

Basis functions for spectral expansions over triangular elements defined in terms of
Jacobi polynomials have been developed by Dubiner [35] and Sherwin and Karniadakis
[165], as discussed by Heinrichs [57]. In the orthogonal collocation method, the integral
equation is enforced at scaled zeros of the basis functions or scaled base points of a Gauss-
triangle integration quadrature to achieve spectral accuracy. The accurate computation of
the singular boundary integrals, however, requires the use of specialized quadratures for
numerical integration of singular, weakly singular, and nearly singular integrals over surface
elements that are not available.

8.9. Fast-Summation Methods

When a large number of interfaces are involved, the computation of the single- and
double-layer hydrodynamic potential becomes prohibitively expensive, and the use of ex-
pedited or fast summation methods for solving the integral equations becomes necessary.
In one approach, the number of function evaluations is reduced by expressing the inter-
action between two well-separated particles in terms of multipole expansions, where the
coefficients of the singularities are computed from the instantaneous geometrical shapes
[22]. In the fast-multipole-method for Stokes flow developed by Sangani and Mo [158]
for suspensions of spherical particles, the Stokes-flow singularities are grouped into boxes,
and their induced velocity is expressed in terms of multipole expansions. Zinchenko and
Davis [209] argued that an alternative approach is better suited for nonspherical interfaces
in triply periodic flow. The development and implementation of efficient general-purpose
fast-solution methods is an area of active research [70].
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TABLE I

Categories of Problems Studied by the Method of Interfacial Dynamics for Stokes Flow. The

Qualifiers 3D, 2D, and Axs, Stand, Respectively, for Three-Dimensional, Two-Dimensional, and

Axisymmetric Flow

Drops and bubbles
• Deformation of a drop or bubble in extensional flow (2D, axs): Youngren and Acrivos [201], Rallison and

Acrivos [149], Pozrikidis [134, 137].
• Relaxation of an extended drop (axs): Stone and Leal [177, 178], Tjahjadiet al. [185], Lister and Stone [90].
• Deformation of a compund drop or liquid shell in extensional flow (axs): Stone and Leal [179].
• Deformation of a drop in infinite linear flow (3D): Rallison [148], Kennedyet al. [65], Uijttewaal and Nijhof

[189], Kwak and Pozrikidis [72].
• Motion of a rising or falling drop (axs): Koh and Leal [68], Pozrikidis [124], Muldowney and Higdon [109].
• Deformation of a drop in a rotating fluid (axs): Lister and Stone [89].
• Deformation of an electrically charged drop (axs): Baygentset al. [13].

Drop and bubble interactions
• Interaction of rising or falling drops (axs, 3D): Manga and Stone [98, 99, 100], Manga [97], Davis [29],

Zinchenkoet al. [211], Roumeliotis and Fulford [155].
• Pairwise drop interception in shear flow (2D, 3D): Loewenberg and Hinch [92], Li and Pozrikidis [109].

Periodic suspensions
• Simple shear flow of doubly-periodic suspensions (2D): Liet al. [81], Charles and Pozrikidis [22].
• Simple shear flow of triply-periodic suspensions (3D): Pozrikidis [129], Loewenberg and Hinch (1996) [91],

Loewenberg [93], Zinchenko and Davis [209].

Drops and bubbles near walls and interfaces
• Motion of a drop normal to an interface (axs): Chi and Leal [23], Ascoliet al. [3], Tanzoshet al. [184], Koch

and Koch [67].
• Gravity-driven motion of a drop normal to a wall (axs): Pozrikidis [125].
• Drop in shear flow above a plane wall (3D): Uijtterwaalet al.[188], Kennedyet al.[65], Uijtterwaal and Nijhof

[189].

Flow past drops and bubbles adhering to a wall
• Shear flow past a drop adhering to a wall (2D, 3D): Li and Pozrikidis [82], Dimitrakopoulos and

Higdon [31, 32], Yon and Pozrikidis [199], Schleizer and Bonnecaze [160].

Drops and bubbles in tube and channel flows
• Drops moving through a circular tube due to pressure gradient or gravity (axs): Martinez and Udell [102, 103],

Pozrikidis [128].
• Suspensions of drops in plane Couette/Poiseuille or semi-infinite shear flow above a plane wall (2D):

Zhou and Pozrikidis [205, 206, 207], Halpernet al. [50], Li and Pozrikidis [84].
• Semi-infinite bubble through a compliant channel with elastic walls (2D): Gaveret al. [44], Yap and Gaver

[197].
• Motion of drops through a branched or converging-diverging channel (2D): Manga [95], Khayatet al. [63].
• Droplet motion in a cavity (2D): Manga [96].
• Motion of a file of drops through a circular tube (3D): Coulliette and Pozrikidis [25].

Drop at the tip of a tube
• Drop or bubble at the tip of a tube (axs): Zhang and Stone [203], Wonget al. [195].

Drops and bubbles in the presence of surfactants
• Self-induced deformation of a capsule (axs): Sapir and Nir [159].
• Drop in elongational flow (2D, axs): Stone and Leal [180], Millikenet al. [106], Pawar and Stebe [118],

Pozrikidis [137], Eggleton and Stebe [39], Eggletonet al. [38].
• Deformation of a drop translating in infinite space or through a tube (axs): Borhan and Mao [16],

Tsai and Miksis [187], Johnson and Borhan [60, 61].
• Deformation of a drop in linear flow (3D): Li and Pozrikidis [83], Yon and Pozrikidis [198].
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TABLE I —Continued

• Deformation of a drop adhering to a wall (2D, 3D): Yon and Pozrikidis [199], Schleizer and Bonnecaze [160].
• Bubble at the tip of a tube (axs): Wonget al. [196].
• Semi-infinite bubble through a flexible channel (2D): Yap and Gaver [197].

Thermocapillary motion
• Motion of a drop near a plane wall (axs): Ascoli and Leal [4].
• Migration of two deformable drops (axs): Zhou and Davis [204].

Drop and bubble coalescence and sintering
• Coalescence of two drops (2D, axs): Hiram and Nir [58], Kuiken [71], Primoet al. [147].
• Shrinkage of bubbles trapped in a liquid (2D, axs): Van de Vorst [190, 191, 192], Primoet al. [146].

Liquid threads and annular layers
• Instability of threads and annular layers coated on the interior surface of a circular tube (axs):

Newhouse and Pozrikidis [114], Pozrikidis [140], Kwak and Pozrikidis [73], Kwaket al. [75].
• Instability of a liquid bridge subtended between two coaxial cylinders (axs): Gaudetet al. [43, 44].

Liquid capsules
• Capsules with fibrous interfaces (axs): Sapir and Nir [159], Nir [115], Zinemanas and Nir [212, 213, 214].
• Elastic capsules in elongational flow (axs): Liet al.[80], Bathès–Biesel [9], Diazet al.[30], Kwak and Pozrikidis

[74].
• Elastic capsules passing through constrictions (axs): Leyrat–Maurin and Barth`es–Biesel [79].
• Capsules with viscous interfaces (3D): Pozrikidis [130].
• Capsules with incompressible interfaces (axs, 3D): Pozrikidis [126], Zhou and Pozrikidis [208],

Krauset al. [69].
• Elastic capsules with various unstressed shapes in simple shear flow (3D): Pozrikidis [131], Ramanujan and

Pozrikidis [150], Navot [112], Pozrikidis [109].
• Deformation of elastic capsules and flow of doubly-periodic suspensions (2D): Breyiannis and Pozrikidis [18].

Films, layers, and extended interfaces
• Extruded film flow (2D): Kelmanson [62].
• Film flow down a plane wall into a pool (2D): Hansen [52].
• Film-flow down a periodic wall (2D): Pozrikidis [123].
• Deformation of an interface due to liquid withdrawal (axs): Lister [87].
• Spreading of a liquid over an interface (2D, axs): Lister and Kerr [88].
• Gravitational instability of a film on a plane wall (2D): Newhouse and Pozrikidis [113].
• Film-flow down a plane wall with a hump or an attached particle (2D, 3D): Hansen [51, 53], Pozrikidis and

Thoroddsen [145].
• Multilayer flows (2D): Pozrikidis [134, 135, 138].

Rigid particles near interfaces
• Motion of spherical particles normal to a deformable interface (axs): Leal and Lee [77], Lee and Leal [78],

Gelleret al. [46], Stoos and Leal [181, 182], Manga and Stone [100].

9. OVERVIEW OF APPLICATIONS

Several versions of the method of interfacial dynamics for Stokes flow have been im-
plemented to study a variety of problems in science and engineering with applications in
materials science, chemical engineering, geophysics, and biomechanics. A review of early
work was given by Tanzoshet al.[184] and Stone [176]. Table I presents an overview of flow
configurations considered, illustrating the diversity of the applications and summarizing
the state of the art regarding theoretical development and numerical implementation. The
abbreviations 3D, 2D, and axs stand, respectively, for three-dimensional, two-dimensional,
and axisymmetric flow. A collection of simulation programs that solve several families of
problems is available in the fluid dynamics library FDLIB [139].
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FIG. 7. Deformation of a liquid capsule enclosed by an elastic membrane whose unstressed shape is a
biconcave disk, subject to simple shear flow along thex axis [144]. (a) Sequence of profiles in thexy plane
of symmetry; the heavy solid line corresponds to the biconcanve disk; (b, c) three-dimensional perspectives
corresponding to the shapes drawn with the heavy dashed lines in (a).
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FIG. 7—Continued

We conclude this section by presenting two illustrations. Figure 7 shows results of
recent simulations on the deformation of a liquid capsule enclosed by an elastic mem-
brane with the unstressed shape of a biconcave disk, subject to a simple shear flow [144].
Figure 7a illustrates a sequence of profiles in the plane of symmetry, with the heavy solid
line corresponding to the biconcanve disk, and Figs. 7b–7c illustrate three-dimensional
perspectives corresponding to the profiles drawn with the heavy dashed lines in Fig. 7a.
Figure 8 shows instantaneous profiles of liquid drops in a two-dimensional doubly periodic
suspension evolving under the influence of a simple shear flow; the interfaces are occupied
by an insoluble surfactant (simulation conducted for the purpose of this review).

10. FUTURE DEVELOPMENTS

Since the pioneering work of Youngren and Acrivos [201], some 25 years ago, con-
siderable progress has been made in the theoretical foundation and implementation of
boundary-integral methods for interfacial flow. The general subject continues to attract the
attention of researchers in the fields of applied mathematics, computational science, and
mainstream engineering, and short courses are offered in at least two institutions. In the
preceding sections, we identified several topics for further theoretical and computational
development, including the following:

• Investigation of the properties of the integral equations for suspensions of drops and
capsules with different physical properties and general flow configurations.
• Development of fast methods for the iterative solution of the integral equations.
• Development of efficient integration quadratures for singular integrands over three-

dimensional elements with flat and curved shapes.
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FIG. 8. Instantaneous profiles of liquid drops in a two-dimensional doubly-periodic suspension evolving
under the influence of a simple shear flow in the horizontal direction; the interfaces are occupied by an insoluble
surfactant.

• Implementation of spectral-element methods over triangulated interfaces.
• Numerical methods for smoothing the position of interfacial marker points and func-

tions defined over a three-dimensional interfaces.
• Fast, general-purpose methods for simulating large systems in two- and three-

dimensional flow.
• Development of robust algorithms for regridding in triangulaton.
• Development of efficient formulations for nonNewtonian fluids and flow at nonzero

Reynolds number.

Among all fields of application, the field of biomechanics and biorheology is likely to
benefit the most from the efficiency, elegance, and convenience of the method of interfacial
dynamics for Stokes flow. The next decade is expected to wittness the growth of the emerging
discipline of computational biomechanics, and boundary-integral methods, and those who
contribute to their development and implementation, will certainly play an important role.
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APPENDIX

Consider a nonsingular vector functionF defined in three-dimensional space, and an
open surfaceD bounded by the closed contourC. Stokes’ circulation theorem provides us
with the identity ∫

D
(∇ × F) · n dS=

∫
C

F · t dl, (A.1)

wheren is the unit vector normal toD, t is the unit vector tangential toC oriented according
to the right-handed rule with respect ton, andl is the arc length alongC measured in the
direction of t. SettingF = A × B, whereA and B are two arbitrary nonsingular vector
functions defined in the three-dimensional space, and reverting to index notation, we find

εi jkεklm

∫
D

∂

∂xj
(Al Bm)ni dS=

∫
C

Fi ti dl. (A.2)

Straightforward manipulation of the left-hand side of (A.2) yields

(δi l δ jm − δimδ j l )

∫
D

∂

∂xj
(Al Bm)ni dS

=
∫

D

∂

∂xj
(Ai Bj )ni dS−

∫
D

∂

∂xj
(Aj Bi )ni dS=

∫
C

Fi ti dl. (A.3)

If the surfaceD is closed, the integral on the right-hand side of (A.3) vanishes yielding the
identity ∫

D

∂

∂xj
(Ai Bj )ni dS=

∫
D

∂

∂xj
(Aj Bi )ni dS. (A.4)

As an application, we identify the vector functionA with one of the unit vectors (1, 0, 0),
(0, 1, 0), or (0, 0, 1), and obtain the identity∫

D

∂ Bj

∂xj
ni dS=

∫
D

∂ Bj

∂xi
n j dS (A.5)

presented by Rosenkilde [156].
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