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Theoretical and computational aspects of the method of interfacial dynamics for
flow at vanishing Reynolds number are considered. The mathematical formulation
relies on the boundary-integral representation that expresses the flow in terms of
distributions of Stokes-flow singularities over the interfaces. The densities of the
distributions are identified with the jump in the hydrodynamic traction due to in-
terfacial in-plane and transverse tensions, the interfacial velocity, or the strength of
a hydrodynamic potential. The numerical procedure involves describing the inter-
faces in terms of interfacial marker points that reproduce the evolving shapes of the
interfaces by global or local interpolation; solving integral equations of the second
kind for the interfacial velocity or for the density of a hydrodynamic potential; and
computing the motion of the marker points while simultaneously updating interfacial
fields relevant to the dynamics, including the concentration of a surfactant and the
position of interfacial point particles at an equilibrium configuration. Interfaces ex-
hibiting isotropic tension, elastic tensions, viscous, and incompressible behavior are
considered. The mathematical modeling of the tensions and bending moments devel-
oping over interfaces with a membrane-like constitution is discussed in the context
of the theory of thin shells. To facilitate the numerical implementation, the coupling
of the interfacial mechanics to the hydrodynamics by means of interface force and
torque balances is formulated in global Cartesian coordinates. Recent progress in
the implementation of boundary-element methods is reviewed, and areas for further
research are identified. © 2001 Academic Press
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1. INTRODUCTION

In two seminal papers, Jawson [59] and Symm [183] demonstrated that the inte
equations relating the boundary values of a harmonic function to the boundary distribu
of its normal derivative may be solved accurately and economically using relatively sim
numerical methods. In the nearly four decades that have elapsed, their approach has
extended and generalized to encompass a multitude of problems in several branch
science and engineering. The new methodology has spawned the well-established cle
boundary-element methods founded by Brebbia [17] with initial emphasis on potenti
field theory and elastostatics. Numerical solutions of the boundary-integral equation
Stokes flow were first presented by Youngren and Acrivos [200] with reference to flc
past a rigid particle. A growing body of literature on boundary-integral-equation metho
and their derivative class of boundary-element methods for low-Reynolds-number flow
been established since that time, as reviewed by Kim and Karrila [66] and Pozrikidis [12

The boundary-integral representation expresses the solution of a linear elliptic partial
ferential equation in terms of generalized distributions of singularities over boundaries. -
goal of the numerical method is to generate the densities of the distributions by solving ar
tegral equation that descends from the boundary-integral representation. If jump-condit
across the interface between two solution domains instead of boundary conditions are <
ified, the two integral representations on either side of the interface may be combined
a unified form. The coupling can be done either before or after the integral equations
been discretized to yield algebraic forms. The first approach produces elegant and pt
cally appealing representations in terms of geometrical shapes and material properties
thereby allows for insightful interpretations. For example, in the case of fluid flow pa
an interface with uniform surface tension, the integral representation expresses the
variables in terms of the interfacial mean curvature, and the overall formulation effectivi
implements a dynamical law for the self-induced motion of the interface driven by |
curvature.

Integral equations for Stokes flow involving the jump in the traction across an interfa
were first derived by Youngren and Acrivos [201] and Rallison and Acrivos [149] with re
erence to the deformation of a bubble or drop subject to an axisymmetric elongational fl
In subsequent years, considerable progress has been made on several fronts: Generall
of the integral formulations with respect to interfacial properties and flow configuratio
theoretical analysis of the properties of the integral equations; and implementation of
ficient numerical procedures for simulating complex interfacial motions. Advanced inte
facial properties and many-body systems with applications in materials science, chernr
engineering, geophysics, and biomechanics have also been considered.

The mathematical foundation of, and early work on, boundary-integral methods for Sto
flow in the presence of interfaces was reviewed by Pozrikidis [127]; the present article sel
as an update. Recent and some original theoretical developments are discussed, hew
of interfacial properties are considered, progress on numerical implementation is repol
and topics for further research are identified. Attention is focused exclusively on Newton
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fluids and on quasi-steady flow at vanishing Reynolds number. The articles by&icse
[186], Occhialiniet al. [116], and Khayat [63] are points of entry into the rather limited
but growing literature of boundary-integral methods for non-Newtonian fluids and flow
nonzero Reynolds numbers.

2. INTEGRAL REPRESENTATIONS AND INTEGRAL EQUATIONS

Consider the motion of a collection of deformable particles, including bubbles, droj
and capsules, consisting of the same or different Newtonian fluids, suspended in anc
ambient Newtonian fluid. In the limit of vanishing Reynolds nuniRemwhereReis defined
with respect to the typical particle size, inertial forces are insignificant, and the motion
the fluid inside and outside the particles is governed by the linear equations of Stokes 1
(e.g., Pozrikidis [127, 133]).

In this section, we review boundary-integral formulations that provide us with a ba:
for computing the instantaneous distribution of the velocity over the interfaces, and
evaluating the velocity and the pressure at any point in the flow.

2.1. Two-Dimensional Flow

To begin, we consider a suspensionNbtwo-dimensional particles evolving under the
influence of an imposed flow, as illustrated in Fig. 1a. Requiring that the velocity be cc
tinuous across the interfaces, and following a standard methodology (e.g., Pozrikidis, [1
Chap. 5]), we find that the velocity at a poithat is located within the suspending fluid
is given by the integral representation

1 -
Uj (o) = UF*(X0) = 7= Z/ AFi00Gij (%, X0) d1()
S m=1"Cm

1
+-=> (1= hm) U 00Tk (0 X0 (0 100, (2.1)

whereu® is the imposed velocity prevailing in the absence of the parti€ligstands for the
interface of themth particle| is the arc length alonG,, us is the viscosity of the ambient
suspending fluidi, is the viscosity of thenth particle Ay, = um/ s is the corresponding
viscosity ratio, and is the unit vector normal to the interfaces pointing into the ambier
fluid. In the case of flow extending to infinity, the boundary-integral representation must
derived carefully to avoid the occurrence of Stokes’s paradox where far from the partic
the velocity diverges at a logarithmic rate.

The firstintegral on the right-hand side of (2.1) is the single-layer hydrodynamic potenti
and the second integral is the double-layer hydrodynamic potential of Stokes flow. T
kernelsG andT are the Green'’s functions of Stokes flow representing, respectively, tl
velocity and stress field due to a point force in solitary or periodic configuration. We ha
assumed that the Green'’s function for the velocity conforms with the specified periodic
of the flow and vanishes over the solid boundaries of the flow. For example, if the flc
is bounded by the rigid boundafs, then the velocity Green’s functio@ is required to
vanish when either the point force or the field point is locate@€gnotherwise, additional
integrals over boundaries arise.
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FIG. 1. Schematic illustration of a suspension of capsules in (a) two-dimensional, (b) three-dimensional,
(c) axisymmetric flow.

The density of the distribution of the single-layer potential, denotedAbyis the
modified jump in the traction across the particle interface, defined as

Af=FO —FP = (60 - 5P) .n, (2.2)

wheres'is the Newtonian stress tensor modified to incorporate the presence of a conserve
body force, the superscript (s) denotes the ambient suspending fluid, and the superscri
denotes a particle. For example, if the body force is due to gravity,aher ™ p(g- x)I,
whereg is the acceleration of gravity arids the identity matrix. Accordingly,

Af== {69+ p9g-%1] - [0 +pP(@-x1]}-n
= Af+ (p® = p®)(g-x)n, (2.3)
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where
Af=fO — P = (0(9 - a“”) ‘n (2.4)

is the physical jump in traction determined by the properties of the interface, as will
discussed in Sections 3—7.

For a pointxg that lies inside thgth particle, wherej = 1, ..., N, the velocity is given
by the integral representation (2.1), except that all terms on the right-hand side are divi
by the viscosity ratid.q. Taking the limit as the point approaches the interface of thy
particle, and expressing the limit of the double-layer potential in terms of its principal valt
we derive the following Fredholm integral equation of the second kind for the interfaci
velocity (also known as the boundary-integral equation),

2 1 O .
uj(xO>=1+M{u§>°(xO)—4W Z/C AL (0Gi (%, X0) 1)
S m=1 m

1 N PV
+En]2=:1(1—)nm) /cm Ui(X)Tijk(X, Xo)Nk(X) dl(X) |, (2.5)

where PV denotes the principal value (e.g., Pozrikidis [127]). The solution of this integ
equation is the cornerstone of computational methods for interfacial dynamics in Sto
flow.

An alternative formulation in terms of the vorticity and the stream function is possible
the case of two-dimensional flow or axisymmetric flow, to be considered later in this sect
[62, 71]. The present formulation in terms of the velocity and the traction, however, has
advantage that it may readily be extended to three dimensions and allows the straightfor
implementation of different types of interfacial behavior.

2.2. Three-Dimensional Flow

Next, we consider a suspension Mfthree-dimensional particles evolving under the
influence of an imposed flow, as illustrated in Fig. 1b. The counterpart of the bounda
integral representation (2.1) is

1
81 s

Uj(Xo) = U (Xo) —

N
3 / A fi(0Gij (%, X0) dSX)
m=1 Dm

1 N
+ g mZ:l(l —Am) /m Uj (X)Tijk(X, Xo)Nk(X) d S(x), 2.6)

whereDy, stands for the interface of thneth particle,d Sis an infinitesimal surface area of
Dm, and the rest of the symbols were defined in Section 2.1. For aypihat lies inside
the qth particle, whereg =1, ..., N, the velocity is given by the integral representation
(2.6) except that all terms on the right-hand side are divided by the viscosity.gafite
counterpart of the integral equation (2.5) is

N

1 ~
[u,@"(xw - > /Sm Afi(0Gij (x, X0) dSX)

87 us m=1

10 = T
q

1 N PV
+§n;(1—/\m) /Sn Ui () Tijic (X, Xo) i (%) d S(X) |, 2.7)
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where the poinkg lies at the interface of theth particle,g =1, ..., N, and PV denotes
the principal value of the double-layer integral.

2.3. Axisymmetric Flow

As a special case of three-dimensional flow, we consider a suspensidncobxial
axisymmetric particles evolving under the influence of an imposed axisymmetric flow, p
sibly in the presence of axisymmetric boundaries, as illustrated in Fig. 1c. The counter
of the integral representation (2.1) is

N

1 -
Uy (Xo) = Ug (Xo) — > / Gap (X, X0) A f4(x) d1(x)

8 s —
1 N
* e mglﬂ = Am) /C ) Up () Tagy (X, X0)N, (%) dI(X), (2.8)

where Greek symbols stand foor o denoting, respectively, theposition and the distance
from thex axis, as illustrated in Fig. 1€, stands for the trace of the interface of thth
particle in a meridional plane of constant angleand the rest of the symbols were defined
in Section 2.1.

For a pointxg that lies inside thgth particle, wherej = 1, ..., N, the velocity is given
by the integral representation (2.8) except that all terms on the right-hand side are divi
by the viscosity ratid.q. The counterpart of the integral equation (2.5) is

- 1 J .
Uy (Xg) = e [ua (Xo) — 87 e mzzl/cm Gap (X, X0) A f5(x) dl(x)
1N PV
T mE:Zl(l — Am) /cm Ua (X) Tupy (X, X0)N,, (X) AI(X) |, (2.9)

where the poinkg lies at the interface of thgth particle,g =1, ..., N.

2.4. Single-Layer Representation

We have discussed integral representations of Stokes flow in terms of combined sin
layer and double-layer potentials with physical density distributions. To evaluate the veloc
at a certain point in the flow, we must first assess whether the point lies in the interiol
exterior of a particle, and then use the corresponding integral representation. Locating
position of a point relative to the interfaces can be done by several methods with vary
degrees of reliability and sophistication (e.g., Pozrikidis [136, Chap. 1]). The additior
effort, however, imposes an undesirable computational burden especially when a I
number of evaluations are required.

To circumvent this difficulty, we express the flow in terms of a single-layer potential wi
ana priori unknown density distribution. For example, in the case of three-dimensior
flow, we write

N
Ui (Xo) = U7 (Xo) — Z/D Gij (X0, X) X} (x) d S(x), (2.10)
m=1 m
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wherey is the density of the single-layer potential, and the prirtes inside or outside a
particle (Pozrikidis [124; 127, p. 145]). Straightforward analysis showsytsattisfies the
integral equation of the second kind

2 ~
i =———|[QL— 29 F™ — AT
Xi (Xo) 87 1us(1+ )\q) |:( q) i (Xo0) i (Xo0)
N PV
#3000 [ Tt x0ance dso|. @11)
m=1 Dm
where the pointxo is located at thegth interface,q =1,..., N, and f* = o{° n;

is the traction of the incident flow. The principal-value integral on the right-hand sic
of (2.11) is the adjoint of the double-layer potential shown on the right-hand side
(2.7).

2.5. Green’s Functions

It was mentioned earlier that the use of a Green'’s function that conforms with the peri
icity of the flow and whose induced velocity vanishes over the solid boundaries of the fl
considerably simplifies the integral representation and facilitates the solution of the integ
equations. Green'’s functions for a broad range of flows have been developed and revie
by several authors including Davis [28], Pozrikidis [127, 132], Maul and Kim [104], an
Coulliette and Pozrikidis [25]. Subroutines that evaluate several families of Green'’s fur
tions for two-dimensional, axisymmetric, and three-dimensional flow are available in t
fluid dynamics software library FDLIB [139].

When alarge number of evaluations are required, itis expedient to tabulate properly de
gularized components of the Green'’s function with respect to dimensionless arguments,
then compute them by interpolation [91, 25, 81, 22]. The interpolation, however, must
sufficiently accurate; otherwise the method of successive substitutions for solving the
tegral equations discussed in Section 2.6 may fail, and the interfaces may artificially cr
during the motion.

2.6. Properties of the Integral Equations

The properties of the integral equations of the second kind depend on the values
the viscosity ratios\,, and on the choice of the Green’s function. When all interface
are closed and all viscosity ratios are equal, the integral equations have a unique solt
as long as none of the fluids is inviscid [66, 124]. Moreover, the solution may be fou
by the method of successive substitutions, and deflation may be implemented to expe
convergence. Theoretical analyses of the integral equations for other flow configurati
have been carried out by several authors including Power [120, 121, 122], Van de \V
[192], Pozrikidis [138], and Primet al.[146, 147].

3. INTERFACES WITH ISOTROPIC TENSION

Differences in the magnitude of the attractive forces between the molecules of two |
miscible species on either side of an interface cause the development of isotropic sur
tensiony (e.g., Adamson [1]). Heating and the presence of surfactants alter the strengtl
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these forces and render the surface tension a function of temperature and local surfa
concentration. As the temperature or the surfactant concentration is reduced, the su
tension is raised; when the temperature reaches the critical point, the surface tension
ishes. Tangential surface-tension gradients generate hydrodynamic tractions identifie
Marangoni stresses that may have a significant influence on the structure of the flow an
the deformation of an interface.

3.1. Jump in the Traction across an Interface

Consider an interfacial patch enclosed by the confuas illustrated in Fig. 2. A force
balance over the patch requires

/ (69 —o®) .ndS+/ybd| =0, (3.1)
Patch C

whereb =t x n is a unit vector that is tangential to the interface and lies in a plane th
is normal toC, as depicted in Fig. &,is the unit vector tangential t8, andl is the arc
length alongC. If the interface is described by the equatiGrix, t) = 0, whereG is a
generally time-dependent function, then the unit normal vector is given-bWwG/|VG]|.
This expression allows us to extend the domain of definition of the normal vector off t
plane of the interface and into the whole three-dimensional space. Applying Stokes’ theo
to convert the contour integral to a surface integral on the right-hand side of (3.1), and let
the size of the patch become infinitesimal, we find that the jump in hydrodynamic tract
across the interface is given by

Af=(0® —o®) .n=y2mn—P-Vy, (3.2)

wherexm = %V -n is the mean curvature, arftl= 1 — nn is the tangential projection

operator (e.g., Pozrikidis [127, p. 148]). The two terms on the right-hand side of (3
express, respectively, the normal and tangential components of the jump in traction.
alternative derivation of (3.2) will be presented in Section 4 in a more general framewo

suspending fluid

particle

{

b C

FIG. 2. Force and torque balances are performed over a section of an interface.
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3.2. Double-Layer Representation

In the Appendix, we show that two arbitrary vector functidnandB defined in three-
dimensional space satisfy the integral identity (A.4), where the domain of integiatisn
a closed surface. Let us identify with the interface of a particle, extend the domain of
definition of the normal vector and surface tension into the whole space, and set

A (X) = Gik(X, X0), Bi(x) =y x)n(x), (3.3)

where the singular pointg lies in the exterior ofD, andk is a free index defining the
orientation of the point force. With these choices, identity (A.4) yields

9 9
A_[Gik(x»XO)V(X)nj(X)]ni(X)dS(X):/DW[ij(xsXO)V(X)ni(X)]ni(X)dS(X)-
]

8Xj
(3.4
We expand the derivatives of the products on either side, note that the continuity equa

requiresdGjk (X, Xo)/dx; = 0, take into consideration the unit-length constrajnis= 1
and(Vn) - n = 1V|n|? = 0, and thus find

9 Gk (X,
/ . Gi(x, Xo); (9N (0 ASX) + / y () LX) o (%) d S0
on;j oy
+/7/(X)Gik(X, xo)a—nj(x)dS(x)z/ —Gjk(X, X0) d S(X). (3.5)
D Xj D 8Xj

Straightforward rearrangement of (3.5) yields

an; 3
/ Gik (X, Xo) {yn'ni - 8—)/_(8”' - njni)} () dS(x)
D X

3Xj
Gk (X,
== [ 760220, om0 d i, (3.6)
D Xj

The left-hand hand side of (3.6) is tkhh component of the single-layer potential with jump
in traction given by (3.2).

In summary, we have expressed the single-layer potential associated with (3.2), tc
denoted by S, in terms of an interfacial distribution of point-force dipoles in the form

0G;j (X,
1500 = [ Gyxx0afigasoo = - [ 00 200, (om0 dS00. (@.7)

To be more specific, we consider the free-space point-force dipole given by
dGij (X, Xo) _ ij Rk — dikXj — djkXi Xi X X
9Xic X3 RGN

(3.8)
whereX = x — Xq (e.g., Pozrikidis [133, p. 261]). Substituting this expression into the la:
integral of (3.7), we find

kj [% - (0]

S = — 3=
Ij(XO)_/DJ/(X)If(I?’ [l 3 02 }dS(X), (3.9)

which is consistent with an expression for interfaces with constant surface tension prese
by Zinchenkeet al.[210, Eq. (40)], working in surface curvilinear coordinates. Zinchenk
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et al.[211] find that, with proper regularizaton, as will be discussed in later sections, the:
called “curvatureless” formulation expressed by (3.9) has certain computational advantz
over the primary single-layer formulation for shapes with strongly varying mean curvatu

Now, because the tenson is symmetric, the Green’s function dipole on the right-
hand side of (3.7) may be replaced by its symmetric component with respect to
repeated indices and k. Invoking the definition of the Green’s function stress tensor
Tijk = =ik P; + 9Gij /09X + 3Gkj/0%i, wherep; is the Green’s function vector for the
pressure (e.g., Pozrikidis [127, p. 25]), we write

1 1
1P(x0) = —E/DV(X)p;(x, Xo) d S(x) — E/DV(X)Tijk(X» Xo)Ni )Nk (X) dS(x).  (3.10)

If the flow is not enclosed entirely by an impenetrable boundary, the first term on t
right-hand side of (3.10) expresses the velocity at the pgidtie to a distribution of point
sources with uniform density proportional to the surface tension (Pozrikidis [127, p. 80]). I
example, in the case of flow in an infinite domain(x, Xo) = 2%;/|X|. The second integral
on the right-hand side of (3.10) is the double-layer potential with vectorial strength prop
tional to the normal vector. As the poirg crosses the interface, each one of the integral
on the right-hand side of (3.10) suffers a discontinuity, but the two discontinuities can
one another to give a net contribution that is continuous throughout the domain of flow

When the pointxg lies at the interface, the integrand of the double-layer potential i
(3.10) is nonsingular: as the integration poinapproaches the evaluation poky, the
stress tensofjx behaves like the one corresponding to the free-space Green’s functi
Tijk (X, Xo) = —6%;X; %i/|X|®, the distanc& tends to become orthogonal to the normal vecto
n, the projectiorX - n vanishes quadratically with respecttcand the kernel of the double-
layer potential tends to a finite value that depends on the orientatidniofcontrast, the
integrand of the first integral on the left-hand side of (3.10) diverges quadratically wi
respect tgx|.

Restricting our attention to neutrally buoyant particles, we substitute expression (3.
into the boundary-integral representation (2.6) and obtain a representation in terms
Laplace single-layer potential and a Stokes double-layer potential,

N

1
Uj (o) = UF*(x0) + 7 Z/D y () pj (X, Xo) d S(X)
S m=1"Dm

1 & 1
+8nusm§/m [57’”‘ +“S(1—km>ui}(x)ﬂjk(x, Xo)NK(X) dS(x).  (3.11)

The representation (3.11) is valid at a potgtthat lies in the exterior of a particle. For
a point that lies in the interior of thgth interface, all terms on the right-hand side shoulc
be divided by the viscosity ratiag. Taking the limit as the pointy approaches thgth
interface, we obtain the integral equation

2 N 1 N PV
Uj(Xo) = m {Uj (Xo) + 167 mZ:l/Dm y (X)pj (X, Xo)dS(X)]

N

1 PVT1
Z/ |:§Vni+,U«s(1_)\m)ui](X)Tijk(xsxo)nk(x)ds(x)v (3.12)

87 s m=1

+
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where PV denotes the principal value of the underlying integral. The computation of t
principal value of the integrals on the right-hand side of (3.12) will be discussed in Sectior

3.3. Suspension Rheology

Carrying out the multipole expansion, we find that the coefficient of the stresslet dedu
from the double-layer integral on the right-hand side of (3.11) is given by

N
ik = Coix — Z/D [yning + us( — Am)(Uing + uen)](X) dSx),  (3.13)
m=1 m

wherec is an arbitrary constant (e.g., Pozrikidis [127, pp. 47, 143]). Batchelor [12] show
that the right-hand side of (3.13) represents the contribution of the interfaces to the effec
stress tensor of a suspension. Straightforward rearrangement of (3.13) yields

N

Tik = C8ik + 2Wik — ps Y (L= Am) [ (Uine+ um)](0)dSx),  (3.14)

m=1 Dm

wherec’ is a new constant, and

1 N
Wi = mizjl / 000K — m 0OM0] 4S9 (3.15)

is the surface energy tensor generalized for varying surface tension [156]. When the sur
tensiony is constant, the trace &% is equal toy S5, whereS; is the surface area of the
interfaces. The significant new result is that the right-hand side of (3.14) may be evalue
from knowledge of the shape of the interfaces and interfacial distributions of the veloc
and surface tension; wher, = 1, for all m, the interfacial velocity is not required.

Applying identity (A.5) of the Appendix wittB; = yn;x, wherel is a free index, we
find

N
W= [ xatoods, (3.16)
m=1" Dm

whereAf is given by (3.2). Substituting this expression into (3.14), we recover the gene
form

N
ik = C'8ik + Z [Xi Afe — pus(L — Am)(Uing + un)](X) dSx),  (3.17)
m=1 Dm

which is applicable for an arbitrary traction discontinuity.

3.4. Evolution of the Concentration of an Immiscible Surfactant

When an interface is occupied by an insoluble surfactant, the evolution of the surfact
concentration must be computed simultaneously with the motion of the interface. In
numerical implementation, the interface is regarded either as a material surface or :
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surface of discontinuity consisting of a continuous distribution of point particles or mark
points that are labeled permanently by two convected surface curvilinear coordiates

Kinematic considerations require that the normal component of the marker-point veloc
be equal to the normal component of the velocity of the fluid, but the tangential compon
may be arbitrary. The general form of the marker-point velocity is

U=-mn+w, (3.18)

whereu is the velocity of the fluid, ana/ is an arbitrary tangential velocity. Whan= 0, the
marker points move with the fluid velocity normal to the interface, whereas wherP - u,
the marker points move with the whole of the fluid velocity.

The evolution of the concentration of ammisciblesurfactant that diffuses over the
interface but not into the bulk of the fluids is governed by the equation

ar >
(EL : =W V[ — Vs (I'Ug) = IM'2kpu - N4 DsVET, (3.19)

whereus = P - uisthe component of the fluid velocity tangential to the interfage= P - V
is the surface gradienD)s is the surfactant diffusivity in the plane of the interface, anc
V2 = Vs Vsis the surface Laplacian [83, 110, 193, 196, 198]. Wiwex 0, the first term
on the right-hand side of (3.19) does not appear [175]. Expressions for the right-hand -
of (3.19) in surface curvilinear coordinates in terms of the contravariant components
the velocity are given by Waxman [193], Zinemanas and Nir [212], Stone and Leal [18
and Wonget al. [196]. If the surfactant is miscible into one of both of the bulk phases, a
additional flux expressed the net rate of sorption should be included on the right-hand :
of (3.19) [110, 61].

To complete the system of governing equations, we require a constitutive equation rela
the surface tensiop to the surfactant concentratidn In the simplest approximation,
physically valid for small surfactant concentrations, we assume the linear law

_ v (4T
y—l_ﬂ(l ﬁro)’ (3.20)

wherel'g andyy are, respectively, areference surfactant concentration and the correspont
surface tension. The dimensionless physical congtantloRT/y. expresses the sensitiv-
ity of the surface tension to the surfactant concentratidis the ideal gas constart, is
the absolute temperature, apgdis the surface tension of a clean interface that is devoi
of surfactants (e.g., Adamson [1]). More advanced constitutive equations developed in
context of interfacial thermodynamics are discussed by Pawar and Stebe [118] and Joh
and Borhan [61].

4. INTERFACES WITH ELASTIC PROPERTIES

Cleaninterfaces and interfaces hosting monolayers of surfactants exhibit isotropic sur
tension. Grossly contaminated interfaces, polymerized interfaces, and biological interfe
consisting of lipids and proteins exhibit more involved mechanical properties. Multistru
tured interfaces, in particular, develop elastic tensions and bending moments similar to t
exhibited by thin elastic shells.
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For example, the interface between a red blood cell and the ambient plasma con:
of a lipid bilayer that is supported by a network of proteins, with an assortment of oth
proteins also transversing the dual structure [40, 167, 107]. The bilayer is respons
for incompressible behavior that preserves the surface area of any infinitesimal or fir
portion of the membrane during deformation. The cytoskeleton is responsible for ela:
behavior that causes the cell to return to the resting shape of a biconcave disk in
drostatics. When a red blood cell is subjected to hydrodynamic stresses, the memb
develops anisotropic elastic tensions and a position-dependent isotropic tension that
sures incompressible deformation. The excess area of a healthy membrane, combined
its low modulus of elasticity, allows the cell to readily deform and squeeze through t
microcapillaries.

Membranes of vesicles consisting of lipid bilayers exhibit bending elasticity, that i
resistance to bending from an equilibrium configuration [86]. If the bilayer is symmetri
the equilibrium shape possesses zero mean curvature. More generally, bending elas
allows vesicles to obtain a great variety of shapes and to exhibit different modes of oscillat
in excitation [163].

The mathematical modeling of stresses and bending moments developing over membi
like interfaces draws heavily from the theory of thin shells [42, 47, 48, 111, 41, 108, 11
14,105, 85]. In this theory, the membrane is regarded as a curved two-dimensional mec
of small or zero thickness, and its mid-surface is described in parametric form in terms
two-surface curvilinear coordinates. Three approaches are available for describing the
brane deformation, for deriving equilibrium conditions, and for computing the stresses ¢
moments developing due to deformation. In the first approach, the membrane is regarde
a thin sheet of a three-dimensional material, and asymptotic forms of the governing ec
tions and boundary conditions are derived in the limit of zero thickness (e.g., Le Dret &
Raoult [76]). In the second approach, special assumptions are made regarding the d
mation of fibers that are normal to the midsurface of the membrane. In the third approe
the third dimension is abandoned at the outset, and the membrane is regarded as a ¢
two-dimensional medium.

The third approach has significant advantages: It circumvents certain inconsisten
encountered in the first two approaches [20], and it is appropriate for molecular membra
for which the assumption of continuum in the normal direction is not appropriate. Rect
work by Steigmann and Ogden [173, 174] and Steigmann [171, 172] has establishe
rigorous theoretical foundation which allows the consistent computation of the membr:
tensions and bending moments from a strain energy function.

4.1. Stress Resultants and Bending Moments

Consider a membrane in a specified reference configuration, and label the point parti
that compose it by two convected surface curvilinear coordingteg), so that a line of
constanty, a line of constant, and a line along the unit normal vectof define a system
of right-handed but not necessarily orthogonal coordinates, as depicted at the top dray
of Fig. 3. The positions of point particles in the reference state are denote@(byn).
Assume now that the membrane deforms, and denote the new positions of the point part
by x(¢, n). The developing in-plane stress resultants or elastic tensigrnsansverse shear
tensiongy,, and bending moments,g are illustrated in Fig. 4. In the “membrane approx-
imation” of thin-shell theory, the transverse tensions and bending moments are neglec
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FIG. 3. Schematic illustration of a three-dimensional membrane at the reference and the deformed state. |
particles distributed over the membrane are marked permanently by two convected surface curvilinear coordi

& m.

and only in-plane stress resultants are considered [24]. This approximation, however, is
appropriate for polymerized capsules and biological membranes where bending mom
make an important, if not essential, contribution.

4.2. Interface Force and Torque Balances in Cartesian Coordinates

Describing the membrane tensions and bending moments in global Cartesian coordir
facilitates the interfacing of the membrane mechanics to the hydrodynamics on either
of an interface. In the Cartesian formulation, the domain of definition of the membra
tensions and bending moments is extended into the whole three-dimensional space st
to appropriate constraints, as follows [49, 85, 144].

The in-plane tensions are described in terms of the Cartesian tersmthat the in-plane
tension exerted on a cross section of the membrane that is normal to the tangential unit ve
b is given byb - T and, furthermoren - T = 0andz - n = 0; the last restriction ensures that
the tension lies in the tangential plane. For example, if an interface exhibits isotropic tens
y, T = yP, whereP = | — nn is the tangential projection operator. The transverse she
tension is described in terms of the Cartesian vegt@o that the transverse shear tensior
exerted on a cross section of the membrane that is normal to the tangential unitbvect
is given byb - g and, furthermoren - g = 0. The bending moments are expressed in term
of the Cartesian tensan, so that the bending moment vector exerted on a cross secti
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n

FIG. 4. Depiction of (a) in-plane and transverse shear tensions (stress resultants), and (b) bending mon
developing around the edges of a patch on a three-dimensional membrane.

of the membrane that is normal to the tangential unit veatisrgiven byn x (b - m) and,
furthermoren - m = 0 andm - n = 0; the last restriction ensures that the moment vecto
lies in the tangential plane.

Consider a patch of a membrane enclosed by the co@owas illustrated in Fig. 2.
Assuming that the mass and thus the inertia of the membrane is negligible, we perfor
force balance over the patch to obtain

/ h(a(s)—o(c))-ndS—i—/Cb'(T‘i‘qn)dl:Ov (4.1)
patcl

wheret is the unit vector tangential 8, b = t x nis the unit vector that is tangential to the
membrane and lies in a plane that is normal to the cor@and is the arc length alonG.
Using the divergence theorem to convert the contour integral into a surface integral on
right-hand side of (4.1), and taking the limit as the size of the patch becomes infinitesin
we find that the jump in the hydrodynamic traction across the membrane is given by

Af=(0®—-09) . n=—(P V) (r+an) = —Trace[P- V)(r + qn)]. (4.2)

(e.g., Pozrikidis [144]). The right-hand side of (4.2) expresses the surface divergence of
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generalized elastic tension tensor in Cartesian coordinates [110]. The tangential deriva
are taken with respect to two isometric orthogonal rectilinear coordinates that are tange
to the membrane at the point where the divergence is evaluated.

An analogous torque balance with respect to the arbitrary peirgquires

/ (X — X¢) X [(O’(S) — a(c)) -njdS+ /(X —Xe) x [b- (z +qgn)]dl
patch C

+/nx(b-m)d|:0. 4.3)
C

Using the divergence theorem to convert the contour integral into a surface integral on
right-hand side of (4.3), taking the limit as the size of the patch becomes infinitesimal, ¢
then using the force balance (4.2), we derive an expression for the transverse shear ter

q=[(P-V)-m]-P=Trace[P-V)m]-P, (4.4)
and another expression for the antisymmetric part of the in-plane tension tensor,
T—7'=B-m—-m'-B, (4.5)

where the superscrifit denotes the matrix transpose, @e: Vn is the symmetric Carte-
sian curvature tensor (e.g., [19, 193, 144]).

4.3. Interface Force and Torque Balances in Surface Curvilinear Coordinates

The Cartesian formulation described in Section 4.2 requires that the membrane tens
and bending moments be extended into the whole space in an appropriate fashion.
extension can be avoided by working in surface curvilinear coordinates (e.g.eBdibsel
[8]). To set up this formulation, we introduce the generally nonunit tangential vectors

aX X
te=—, t,=— (4.6)
0§ n
and the corresponding arc length metric coefficients
he = [te], h, =1t 4.7

The first fundamental formof the surface is defined as the square of the length of &
infinitesimal fiber whose end-points are separated by a vector corresponding to the
finitesimal coordinatedé andds,

(d)? = & (d€)? + 2az, dg dn + a,, (dn)?, (4.8)
where
Qg = hg’ Qp=ay =t -1, a,= h%- (4.9)

The surface area of a patch confined betweengtworn segments with infinitesimal spans
dé anddy is equal tod S= ,/adgdn, wherea = hzh? — &, .
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Thesecond fundamental forof the surface is defined as the quadratic form

Q= _béé(di:)z — 20, d& dn — bm](dn)za (4.10)
where
ot ot at at
ngZI’LE, bgn:bngzn-ﬁeraf;, b"”:n'?;’ (411)

n =t x t,/|t; x t,|is the unit normal vector, arlg is the symmetric surface curvature
tensor. The normal curvature of the surface in the direction of an infinitesimal vector whe
end-points correspond to the infinitesimal incremet§tanddy is equal to the ratio of the
second to the first fundamental form of the surface.

Next, we introduce the surface contravariant components of the tension tetsooted
by %8, the surface contravariant components of the transverse shear tension vector der
by g¢ andq”, and the surface contravariant components of the bending moment ten
m denoted bym*#. Greek superscripts and subscripts standsfor 5. Subject to these
definitions, the force equilibrium Eq. (4.2) takes the form

Af=(0® —0©@) . n=Af"n+ Afft + AfTL,, (4.12)
where
AT = bt —qfls, AfS = -5+ biq%, AfT=—1P|5 +blg*, (4.13)

[108, p. 165; 193, Eq. (3.5)]. Correspondingly, the torque equilibrium Egs. (4.4) and (4
take the form

o =m* ., q'=m",, 1 —1% =bim* —bIm* (4.14)

where the mixed componenbg are related to the pure componebtg by the relation
bg« = ag, bl (Mgllmann [108, p. 165]; Waxman [193, Eq. (3.9)]. A vertical bar signifies
the covariant derivative with respect to the subscribed variable defined in terms of
Christoffel symbols [5].

4.4. Interface Force and Torque Balance in Lines of Principal Curvatures

Considerable simplifications occur by referring to surface curvilinear coordinates whe
tangential vector at every point is oriented in the direction of the principal curvature
defined as thdéines of principal curvatureA line of constant;, a line of constan§, and
a line directed along the unit normal vectodefine a right-handed system of orthogonal
curvilinear coordinates. The directions of the stress resultants and bending moments
defined in Fig. 4. Inthe case of an axisymmetric interface supporting axisymmetric tensic
to be discussed in Section 5, the lines of principal curvatures are and remain the trace
the membrane in meridional and azimuthal planes.

In surface curvilinear coordinates that are lines of principal curvatures, the decomposi
(4.12) takes the preferred form

Af= (09 —0©@) .n=Af"n+ Af'fe + Af'7e, (4.15)

wheren is the unit normal vector pointing into the ambient fluid ad= t:/|t¢], &, =
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t,/It,| are unit tangential vectors. The normal and tangential components of the tract
discontinuity are given by

1 B 0

Af" = ———|=—=(h —(h , 4.16
KeTee + KnTyp heh, [85( 20e) + 37)( gqn)} ( )

, 1 3hg oh
Af'E = [3%'( 0 gg) + (hél’ng) + WTSU — a;l’,m:| — KeO, (4.17)

1 0 ahg oh
AV”=— nTen) + o ( Tyn) — —— Tee + ”t}—x , (418
[85 &n &ty an §¢ 9E né 7% ( )

wherek; = —b;;/hZ and«, = —b,,/h? are the principal curvatures. Moreoever, expres
sions (4.14) simplify to

1739 9 ah, ah
= —(h,m —(h:m —msy — —m,, |, 4.19
o heh, [35( ) és)+3n(s he) + Py nn} (4.19)
179 9 ah; oh
dy hghn {E(hnmén) + %(hémﬂn) an Mg + 8‘; 'Ié:l’ (4-20)
Ten — Tye = —KeMey + Ky Mye, (4.21)

(e.g., Mgllimann [108, p. 33]). In Section 5, we shall present the specific forms of the
expressions for axisymmetric membranes in cylindrical polar coordinates.

4.5. Surface Deformation

As a prelude to evaluating the elastic tensions, we refer to Fig. 3 and introduce
three-dimensional Cartesian relative deformation gradient téhadth components

0X%;
F. = ) 4.22
4 (8XJR>$W (4.22)

Let the infinitesimal vectodIR describe a small fiber that is either tangential or normal tt
the membrane at the reference state. After deformation, the fiber has rotated and stret
or compressed to its image described by

d =F-dR (4.23)

The nine components of the relative deformation gradient tdhsoay be evaluated from
knowledge of the images of two fibers that are tangential to the membrane at a point,
the image of a fiber that is normal to the membrane at that point. In the present formulat
the image of a fiber that is normal to the membrane is assumed to vanish, so that
deformation of this fiber does not enter the computation of the elastic tensions explici
but only implicitly by means of the deformation of the tangential fibers, and according
constitutive laws expressing membrane material properties.

For the purpose of computing the elastic tensions, Eq. (4.23) is replaced by the eque

dl =F°-df, (4.24)
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where
FS=F. (I —nRnR) (4.25)

is the relativesurfacedeformation gradient, and the superscript S stands for “surface
Clearly,nR is an eigenvector dfS corresponding to a vanishing eigenvalue, which show:
thatFS is singular.

If dIR is a tangential fiber at the reference state, ttieis also a tangential fiber in the
deformed state, and this requinesdl = n - FS . dIR = 0. Since, however, the orientation
of dIR is arbitrary, it must be that - FS = 0, which suggests th&S = (I — nn) - FS or

FS=( —nn)-F- (1 —nRnR). (4.26)

Thus,n is an eigenvector of the transposersfcorresponding to the vanishing eigenvalue.
The polar decomposition theorem allows us to whfe= R - U =V - R, whereR is an
orthogonal matrix expressing plane rotation, ahdndV are the positive-definite and
symmetric right or left stretch tensors expressing pure deformation.

Following standard procedure in the theory of elasticity (e.g., [14, 47, 48]), we introdu
the positive-definite and symmetric surface left Cauchy—Green deformation tensor

VZ=FS.FY, (4.27)

where the superscrift denotes the matrix transpose. The eigenvaluég®aire equal to
22,22, and 0, corresponding to the orthogonal tangential eigenveetors, and to the
normal vecton. The eigenvectors df? are also eigenvectors of the tension tensor

In terms of the principal elastic tension§ andz§ and the unit tangential eigenvectors
e; = Vvi/|vi| and e, = vo/|v»|, the part of the symmetric tension tensor is given by the
spectral decomposition

T =1,66 + e (4.28)

In the presence of bending moments, the tension tensor has an additional antisymm
component, as will be discussed later in this section.

4.6. Constitutive Equations for the Elastic Tensions

Next, we proceed to relate the tensions to the surface strains by means of a constitt
equation. As a prelude, we consider a three-dimensional elastic medium and expres:
force exerted on a small material patch of surface di®@that is perpendicular to the unit
normal vectomn in terms of the Eulerian stress tensarin the familiar form

df =n-ods (4.29)

Furthermore, we introduce tHiest Piola—Kirchhoff tensoil, also called thé.agrange or
nominal stress tenspand thePiola—Kirchhoff tensofS, defined by the relations

df=n.o0dS=nR.Td=nR.S.FTdS, (4.30)

wherenR is the unit vector normal to the patch at a reference s&d2js the corresponding
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surface area, and the supersciiptienotes the matrix transpose (e.g., [42, p. 438; 11
p. 152]). The Eulerian stress tensors related to the first Piola—Kirchhoff tensérand to
the Piola—Kirchhoff tensa® by the equation

o':lF-Tle~S~FT, (4.31)
J J

where J = Det(F) is the fractional volume of an infinitesimal volume element after the

deformation; for an incompresible material,= 1. For a Green-elastic or hyperelastic

three-dimensional medium, the first Piola—Kirchhoff tensor and the Piola—Kirchhoff ten:

derive from a strain-energy functio'(F) by means of the relations

W W
LS = 4.32
IF; 5 IE;] (432)

Tj =

whereE = %(FT -F —1) is the Green (material or Lagrangean) strain tensor (e.g., [14; 4
p. 449; 47, p. 7; 117, pp. 204-209]).

Considering now the two-dimensional analog of the preceding equations over the cur

surface of a membrane in the absence of bending moments, we replace Eq. (4.31) by

1 S S 1 S ST

=EF.T :ﬁF .S°.FS, (4.33)
whereJS = 111, is the fractional surface area of a material membrane patch after deforn
tion, andTS andS® are the surface Piola—Kirchhoff tensors. The counterparts of relatio
(4.32) are

WS WS
TW=—"¢, §=—xq, 4.34
R S IE? (4.34)
whereES = %(FST -FS — 1) is the surface Green (material or Lagrangian) strain tensor.
Referring to local Cartesian coordinates with two axes parallel to the principal directic
of the tension tensor at a point, and using Egs. (4.33) and (4.34), we find that the princ
tensions are given by
19ws 19ws
Ty = = (4.35)
Kz 311 Al aAZ
Expression (4.28) combined with Egs. (4.35) provides us with a complete descriptior
the elastic tensions.
Kinematic constraints require that the surface strain-energy funéf®depend on the
surface deformation gradient only through strain invariants. Sketlak [168] introduced
the invariants

IP=A7+25-2 17=2323 -1, (4.36)
in terms of which expressions (4.35) take the form

A1 OWS aWsS Ao WS owWs
=20 e, =222 (4.37)
A 01 TN PRI e
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Substituting expressions (4.37) into (4.28), we find

2 WS HWS
—— Y A2 — + 20 — 4.38
T /\1/\2( 2101 + 120260) ais T2 2(6161 + 6 oIS (4.38)
or
2 aws WS
= — — V24 2uh——=( —nn). 4.39
VPP TI r TI R (4.39)

Note that wherdWS/313 = 0, the tensions are isotropic.
Skalaket al.[168] proposed the following strain energy function for the membrane of
red blood cell,

B/1 C
WS=4<2I152+I15—I25>+8 15, (4.40)

where B and C are physical constants with estimated values on the ordeB of
0.005 dynes/cm an@ = 100 dynes/cm. The large magnitude of the constaobmpared
to the magnitude dB ensures that the membrane is nearly incompressible: a small deviat
of 15 from unity generates large elastic tensions.

Barthés—Biesel and Rallison [11] introduced the alternative strain invariants

1 1 1
Ar=Inigio =3 In(13+1), A= E(A§+A§) 1= §|15, (4.41)
in terms of which expressions (4.35) take the form
1 aWsS aws 1 aWsS aws
=] 2 P 2
o1 xm(az\l + 18A2> 2 xlxz(aAl + 28A2> (4.42)
Substituting expressions (4.42) into (4.28), we find
1 aws WS
= — + (a2 A2exen) —, 4.43
T mz(eleﬁezez) ™ + (Aferer + Aseer) T (4.43)
or
1 [awsS aWsS
= —|—(@ —nn)+ —V?|. 4.44
T el aas T A, (4.44)

Note that whe®WS/d A, = 0, the tensions are isotropic. In the limit of small deformations
the strain energy function obtains the standard Mooney—Rivlin form

1
WS =a1A1 + E(OM +a2)AZ 4+ az(Az — Ay), (4.45)

whereas, oz, andaz are material constants (see Section 5).
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4.7. Tensions in a Thin Elastic Shell

It is instructive to compare the results derived in Section 4.6 with corresponding rest
for the tensions developing in a thin shell of a three-dimensional incompressible ela
material with uniform thicknesk (e.g., [47, pp. 156—159; 105, p. 399)). For this purpose
we introduce the&olumestrain invariants

1
|¥EA%+A§+W, 1Y =224+ 23+ 2323, (4.46)
172

and express the principal elastic tensions in terms of the volume strain energy fuittion

as
p_2h (o 1\ WY N 2wV
T, = —— — s
7o\t A&z ey TP ay

(4.47)
P 2h 52 1 awVv a2 owVv
Ty = ——— — .
27 a2 a&s ey ey
The Mooney-Rivlin strain-energy function is given by
E
WV=a[(l—a)(lY—S)—i—a(lg/—S)], (4.48)

whereE is the volume modulus of elasticity andis a material parameter varying be-
tween 0 and 1y = O corresponds to a linear neo-Hookean medium (e.g., Ogden [1C
p. 221]). In the limit of small deformations, expression (4.48) reduces to (4.45) wi
a1 =00, = 5E, a3 = 1E, yieldingWs = £(A2 + A, — Ay), as discussed by Baeb™
Biesel and Rallison [11].

4.8. Constitutive Equations for Bending Moments

The bending moments developing in a hyperelastic membrane derive from a strain en
function of appropriate strain and bending measures. Nonlinear theories of shells applic
for finite deformations have been developed and reviewed by several authors incluc
Sanders [157], Budiansky and Sanders [20], Budiansky [19], Simmonds and Daniel
[166], Naghdi [111], Libai and Simonds [85], and more recently by Steigmann and Ogc
[173, 174], and Pozrikidis [144]. Waxman [193] and Steigmann [172] discuss applicatic
in hydrodynamics.

To illustrate the methods, we confine our attention to the most tractable case of infinit
mal displacements, and refer to orthogonal curvilinear coordinates that are lines of princ
curvatures (e.g. Mgllmann [108, p. 17]). Considering the displacement of a material pc
particle over the membrane, denotedvhyve introduce the strain measures

1 0x ov 10x ov

“ = og 98 U hyon an’
1 0X oV 09X oV
Gf"“né:zmm(an'aﬂag'an)'

The measure;; expresses the elongation of a fiber in the direction of theis, the measure
€, expresses the elongation of a fiber in the direction ofjthgis, and;, is a measure of

(4.49)
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the deformation of an infinitesimal patch. Three corresponding measures of benging,
Kkyn, @andkg, may be defined in terms of the rotation vecioof a surface patch due to the
deformation (e.g., Mgllmann [108, pp. 21, 25]). The strain and bending measures may
be used to define the vectorial strain measure

h'= (ece, €, €nps Keee > Kens ko) (4.50)

and the surface strain energy function
s 1
w :éh-D-h, (4.51)

where D is a positive-definite matrix expressing membrane material properties (e.
Mgllmann [108, p. 45]). For example, if the membrane is a thin shell of a three-dimensiol
isotropic elastic material, the strain energy function may be approximated.owtis first
approximationdescribing the infinitesimal displacement of a thin plate of thickiess

1 Eh
WS = ST .2 [(1 )(6525 + 2652,7 + e,f,]) + (e + 6,7,,)2]
+ 78 [(1-v) (Kgg + 2/<2 + K,m) + vl + K,,,,)z] (4.52)

whereEg = Eh®/[12(1 — v?)] is the plate modulus of bending; is the volume modulus
of elasticity, and is the Poisson ratio (e.g., Fung [42, p. 461]).

In terms of the strain energy function, the stress resultants and bending moments
given by

aWsS 1aws A
Tee = v e =g = 5o Ty = o
O€zs 2 e de
! " (4.53)
oo ows o Taws WS
EE — 3Kg§7 En — g — 28’(57]’ UL/ aKrm.
For the strain energy function expressed by (4.52),
Eh Eh Eh
Tee = 75 (e V), Tey =Tpp = 7€ T = 75 (6 F vese),
1 Eh® 1 ER?
Mee = 57— o (Kes +VKm), My = Mye = 50— ke, (4.54)
1 Eh®
Myy = 121_ (Knn + vKeg).

It should be emphasized that the preceding formulae apply only for small interfac
deformations. The recent work of Steigmann and Ogden [173, 174] establishes a framev
for computing bending moments for finite deformations. In the nonlinear formulation, tl
tension tensor is decomposed into a symmetric part and a skew-symmetric part defin
in Eqg. (4.5). Constitutive equations for the symmetric part and for the tensor of bendi
moments are then developed in terms of a strain energy function of strain and benc
measures.
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FIG. 5. Elastic tensions and bending moments developing around the edges of a patch on an axisymm
membrane.

4.9. Axisymmetric Membranes

Nest, we turn our attention to axisymmetric membranes generated by rotating a
around thex axis, as depicted in Fig. 5. Kinematics and dynamics are described in po
cylindrical coordinates with axial position distance from th& axis, and meridional angle
measured around thxeaxis with origin in thexy plane forming the tripletx, o, ¢). The flow
inside and outside the capsule and the membrane tensions and bending moments devel
due to the deformation are assumed to be axisymmetric.

Following the formalism of thin-shell theory, we consider the mid-surface of the mer
brane and introduce: (a) the azimuthal and meridional tensipasd z,,, which are the
principal tensions of the in-plane stress resultants, (b) the transverse shear tgrasidn
(c) the azimuthal and meridional bending momengsandm,, as illustrated in Fig. 5.

As a preliminary, we introduce the arc length along the trace of the membrane i
meridional plane denoted ts/and the unit vector that is tangential to the membrane an
liesin a meridional plane corresponding to a certain value of the meridional@arigaoted
by ts. The unit vector normal to the interfaae, is directed into the ambient suspending
fluid, as illustrated in Fig. 5. The principal curvatures of the membrane in a meridior
plane and its conjugate plane are denoteddgndx,,.

Using fundamental relations of differential geometry, we find that if the radial positic
of the membrane is described by the equation

o= f(s)=gX), (4.55)
then the principal curvatures are given by

f " g//

TVI-12 A+gHP

Kg =

(4.56)

and

10x 1 1 1
_ix 1o g—gm 11 457
R N o /irg? @57



274 C. POZRIKIDIS

(e.g., Pozrikidis [133, p. 162]). These expressions are consistent with Godazzi's formu
ad
ks = £(0K¢), (4.58)
which allows us to compute one of the principal curvatures in terms of the other.

4.9.1. Force and torque balancesTo compute the jump in the hydrodynamic traction
across the membrane, we consider a small section of the membrane that is confined betv
(a) two meridional planes passing through shaxis, and (b) two parallel planes that are
perpendicular to the axis and enclose a small section of the interface in a meridional plai
with arc lengthAs. Performing a force balance over this section, we find

Af=(0® —0@) .n=Af"n+ Aft, (4.59)

where the normal jump is given by

b
Af" = ksTs + Ky Ty — ;a—s(oq), (4.60)
and the tangential jump is given by
0T, 1of
AfS:—aiss—gg(Ts_T‘ﬂ)—KSq. (461)

The function f (s), describing the shape of the membrane, was defined in Eq. (4.55).
analogous torque balance shows that the transverse shear tension is related to the be
moments by

q=——(oms) — %

10 1 of 1of / 0
m,—— =——
o ds o 0S o 0S

(oms) — m¢> (4.62)

(e.g., Mglimann) [108, p. 33]. Substituting the right-hand side of (4.62) in place of the she
tension in (4.60) and (4.61), we obtain relations in terms of the in-plane stress result:
and bending moments alone.

It is reassuring to confirm that expressions (4.60)—(4.62) are consistent with the m
general expressions for three-dimensional membranes discussed earlier in this sectior
this purpose, we identify the surface curvilinear coordigatéth the arc length measured
along the trace of the membrane in a meridional plane denotexl &yd the curvilinear
coordinaten with the meridional anglep, whereupon the arc length metric coefficients
are given byh; =1 andh, = o. Since all tensions and moments have been assum
axisymmetric, the principal axes coincide with the chosen curvilinear axes, and Egs. (4.1
(4.20) reproduce Eqs. (4.60)—(4.62).

To evaluate the right-hand side of Egs. (4.60)—(4.62), we require constitutive relatic
for the elastic stress resultants and bending moments.

4.9.2. Constitutive equations for the elastic tensionko derive relations for the elastic
tensions, we introduce the principal extension ratios

% = (4.63)

T T oR:
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where the superscript R denotes a reference state. If the area of the membrane is locall
thus globally conserved,

Aehy = 1. (4.64)

To this end, we have two main choices reflecting the assumed nature of the membrane

First, we may regard the membrane as a distinct two-dimensional hyperelastic medi
and express the principal stress resultants in terms of the surface strain energy Mfttior
using equations (4.35), whet€ = 5, 15 = 1, A1 = As, andiz = A,. Alternatively, we
may regard the membrane as a thin sheet of a three-dimensional incompressible ma
and work with the strain invariants shown in (4.46); the principal elastic tensions der
from the volume strain energy functioh’V' using relations (4.47).

4.9.3. Constitutive equations for bending momenta compute the bending moments
developing in a hyperelastic membrane, we introduce the bending measures of strain

(4.65)

Ks = Asks — k8, K, = Ak, — KE,
where the superscript R denotes a reference configuration corresponding to the unstre
shape where the bending moments vanish [151-154]. Zetr@dd. [202] expressed the
bending moments in terms of the surface bending energy fun¥tgin a form that is
analogous to that shown in Egs. (4.35), as

1 0Ws 1 0Ws

= my=——-. 4.66
Ly Ks Y ks 0K, (4.66)

S
Love’s first approximation given by the last expression on the right-hand side of (4.t
yields the bending energy function

We = = (K2 + 2vKsK, + K2), (4.67)

whereEg andv are physical constants expressing membrane material properties.

5. INCOMPRESSIBLE INTERFACES

Biological, membranes consisting of lipid bilayers have a large modulus of dilatation; tt
is, they behave like two-dimensional nearly-incompressible fluids. To account for the me
brane incompressibility, a position-dependent isotropic tension playing the role of surf:
pressure may be added to the in-plane stress resultants. The introduction of an addit
surface function furnishes an additional degree of freedom that allows the satisfactiol
the incompressibility constraint at every point over the membrane.

In global Cartesian coordinates, the incompressibility constraint is expressed by
equation

1 Dhg

g=_——>
hs Dt

=FP-V)-u=0, (5.1)

wheref is the rate of surface dilatatiol)/ Dt is the material derivativeys is the surface
metric associated with the convected surface curvilinear coordinatey) anthe fluid

velocity [162].
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In surface curvilinear coordinaté€s, n), the incompressibility constraint (6.1) takes the
form

1Dhs_1n auxax+8xxau
hs Dt ~ hs 9 T an  dE T Ap
=P-V)-(P-u)+2kmu-Nn=0= U +U"|, + 2kmU-n =0, (5.2)

wherexn, is the interface mean curvature [133, p. 21; 193, Eq. 3.2b; 208]. A vertical bar si
nifies the covariant derivative taken with respect to the subscribed variable, defined in te
of the Christoffel symbols (e.g., [5]). Condition (5.2) also follows from the convection
diffusion equation for a uniformly distributed insoluble surfactant, equation (3.19), &
requiring that the surfactant concentration at the position interfacial point particles movi
with the fluid velocity remains constant in time. The numerical implementation of (5.2) f
capsules deforming under the influence of a simple shear flow was discussed by Zhou
Pozrikidis [208].

Considering axisymmetric flow, we express the azimuthal and meridional tensions
terms of a mean and a deviatoric component; the latter derives from a strain energy func
Pozrikidis [126] simulated the transient deformation of axisymmetric capsules enclosec
incompressible elastic membranes evolving under the influence of an elongational fl
The distribution of the isotropic membrane tension was computed using the incompre
ibility constraint (5.2), and the deviatory elastic tension was computed using a constitu
equation. Requirindd (AsA,)/Dt = 0, whereD/ Dt is the material derivative, we obtain a
scalar constraint on the distribution of the membrane velagity

tsi_’_*ueg:o, (5.3)
o

wherets is the unit vector tangential to the membrane in a meridional planegaisithe
unit vector normal to thex axis. It can be shown by straightforward rearrangement the
condition (5.3) is consistent with the more general expressions (5.1) and (5.2).

In the case of two-dimensional flow, the incompressibility constraint simplifies to

au _ a(u-t)

— = N = A4
T ) +xku-n=0, (5.4)

wheret is the unit vector tangential to the membrahés the arc length measured in the
direction oft, and« is the curvature of the membrane in tkg plane. The numerical
implementation of (5.4) is discussed by Zhou and Pozrikidis [208].

6. VISCOUS INTERFACES

Impurities, surfactants, adsorbed macromolecules, and molecular layers generate
chemical reactions are responsible for interfaces that behave like two-dimensio
Newtonian or viscoelastic Boussinesq fluids (e.g., [161, 193, 10, 170, 36, 110]). Scri\
[161] proposed a constitutive equation for in-plane Newtonian interfacial tensions in s
face curvilinear coordinates. Secomb and Skalak [162] observed that the coupling of
interfacial dynamics to the hydrodynamics on either side of the interface is facilitated
working in global Cartesian coordinates and expressed the Newtonian surface tension te
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in the form
T=yP+(k—€)0P+2€ES, (6.1)

wheref is the rate of dilatation given in Egs. (5.1) and (5R)= | — nn is the tangential
projection operatok and« are two physical constants expressing the interface shear a
dilatational viscosity, an&S is the Cartesian surface rate of deformation tensor given by

1 JUk auy
ES = ZPPy | — + — ). 6.2

The two projections on the right-hand side of (6.2) remove derivatives of the velocity
the direction normal to the interface, as well derivatives of the normal component of
velocity in directions that are tangential to the interface. Thus, the right-hand side of (€
may be computed from knowledge of the velocity distribution over the interface. The r:
of surface dilatior® is given by the trace dtS.

Performing a force balance over a small interfacial patch, and taking the limit as the <
of the patch becomes infinitesimal, we find that the jump in the hydrodynamic tractior
given by

Af=—P.-V)- 1. (6.3)

Substituting this expression into the boundary-integral equation, we obtain an integral ec
tion of a nonstandard kind for the interfacial velocity [130].

7. COMPLEX INTERFACES AND ALTERNATIVE FORMULATIONS

We have discussed the mathematical modeling of membrane tensions and bending
ments in the context of continuum mechanics, working under the auspices of the the
of thin shells. The macromolecular nature of certain interfaces suggests that an altern:
formulation that models a membrane as a network of generally viscoelastic links defil
by computational nodes might be more appropriate. For example, Hahstr{54-56]
developed a network model based on random Delaunay triangulation representing the
throcyte membrane cytoskeleton and obtained estimates for the macroscopic elastic ¢
modulus and modulus of areal expansion.

An alternative method of computing the jump in the hydrodynamic traction across
interface hinges on the concept of configurational energy playing the role of an effect
Hamiltonian (e.qg., [2, 21, 112]). For example, the instantaneous configurational energ;
a membrane consisting of a symmetric lipid bilayer may be expressed in terms of surf
integrals in the form

E=/ ‘L’dS—‘,—ZKB/ k2dS (7.2)
Membrane Membrane

wherexg is a physical constant expressing the bending stiffngsis the membrane mean

curvature, and is a position dependent in-plane tension developing to ensure membr:
incompressibility [163]. Let the instantaneous shape of the membrane be described by
equationG(x) = 0, whereG is a suitable function, and express the interface energy in tt
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form E = E(G(x)) evaluated aG(x) = 0, whereE(-) is a nonlinear integro-differential
functional defined over all possible membrane configurations. The jump in the hydroc
namic traction across the membrane may be found using the principle of virtual displa
ments (e.g., [112]).

Krauset al.[69] discretized the membrane of a vesicle into a collection of flat triangle
defined by computational nodes, represented the flow by a superposition of elemen
flows induced by point forces located at the triangle vertices, and computed the strengt
the point force located at thigh node, denoted by, by the equation

Fo B (7.2)

which is the simplest implementation of the principle of virtual displacements. Althouc
computationally convenient, discrete models are sensitive to the method of surface
cretization—flat versus curved triangulation.

Boeyet al.[15] and Discheet al.[33] developed a coarse-grained molecular model the
permits the direct coupling of classical hydrodynamics to the dynamics of the molecu
layers and networks comprising the membrane, in a manner that circumvents the exp
use of a macroscopic constitutive equation (see also Seifert [163]).

8. INTERFACIAL DYNAMICS

An integrated numerical procedure for simulating the evolution of interfaces using
boundary-integral method involves three main tasks: (a) parametric representation of
interfaces; (b) evaluation of an integral representation or solution of an integral equat
for the interfacial velocity or for the density of a hydrodynamic potential; and (c) tim
integration of the equations governing the motion of interfacial marker points and pos
bly the evolution of dynamically relevant surface functions. In the case of temperature-
surfactant-concentration-dependent surface tension, dynamically relevant surface funci
include the temperature and the concentration of a surfactant. In the case of an inter
consisting of an elastic membrane, dynamically relevant surface functions include the
ordinates and the curvature of the interface at the position of marker points in a refere
configuration. The overall numerical method is described as the method of interfacial |
namics for Stokes flow.

The implementation of the aforementioned tasks is considerably faciliated by the use
piecewise numerical interpolation underlying the formalism of boundary-element metho
In the case of two-dimensional or axisymmetric flow, an interface is represented by a «
lection of planar elements in the form of straight segments, circular arcs, parabolic, cul
cubic-spline, or higher order elements, all defined by consecutive interfacial nodes.
cubic-spline elements are described in parametric form by means of cubic-spline interp
tion for the node coordinates, where the interpolation is done with respect to the polygc
or curved arc length [136]. The geometrical properties of the interface including the norr
vector and the curvature follow readily from the local representation.

In the case of three-dimensional flow, an interface is typically represented by an unst
tured grid of three-dimensional elements defined by groups of interfacial nodes. Comps
to a structured grid defined in global curvilinear coordinates, the unstructured grid has |
advantages: the local curvilinear coordinates over each element are nonsingular, whe
the structured grid may have singular points; and the element shape and size may be re



INTERFACIAL DYNAMICS FOR STOKES FLOW 279

controlled to enhance the spatial resolution at selected regions. The unstructured discre
tion is amenable to the meritorious finite-volume and finite-element formulations for solvi
integral and differential equations over evolving domains. Flat and curved riangular €
ments are particularly attractive because of their ease of implementation. A closed ¢
of triangles may be readily generated by successively subdividing a regular octahedro
icosahedron into four descendant elements, and subsequently deforming the elemer
obtain a desired shape [139].

8.1. Computation of the Normal Vector and Mean Curvature

The unit normal vector and mean curvature of a two-dimensional or axisymmetric int
face follow readily from the parametric representation using standard formulae of differe
tial geometry (e.g., [133]).

A simple method for computing the unit normal vector and mean curvature of a thre
dimensional interface is by evaluating a contour integral. Consider an interfacial [Patct
enclosed by the conto@ and containing the poindy, and introduce the unit vectbrthat
is tangential to the patch and lies in a plane that is norm@laba point, as shown in Fig. 2.
If t is the unit vector tangential tG, andn is the unit vector normal to the interface, then
b =1t x n. In the limit as the contou€ shrinks to the poinkg, the reduced vectorial line
integral

1
a(Xg) = g/cb(x)dl(x), (8.1)

tends to the vector 2,(Xo) N(Xg), Wherek, is the mean curvature of the interface at
the pointxg, and & is the surface area dd. The unit normal vecton(xg) follows by
normalizing the vectoa(Xo), possibly switching its direction to ensure that has a desire
orientation; the mean curvature follows from the inner produ®p) - N(Xp) = 2 km(Xo)
(e.g., [127, 128]). In practice, the contoQris identified either with jointed sections of
surface curvilinear coordinates defining a surface element, or with groups of selected e
of boundary elements in the vicinity of a point.

When an interface has been discretized into flat triangles, the computation of the nor
vector and mean curvature requires interpolating beyond the domain of the individ
elements. Rallison [148] described the shape of an interface in the vicinity of a node
the equationf (x) = 0, expanded the functioh(x) in a Taylor series, truncated the series
at the quadratic term, and computed the unknown coefficients using a numerical met
Zinchenkoet al. [210, 211] approximated the interface in the vicinity of a node with
paraboloid defined in local Cartesian coordinates with one axis normal to the interfac
the node. The coefficients of the local paraboloid were computed by minimization, and
normal vector was improved by iteration; upon convergence, the mean curvature follov
from standard expressions. Zinchenko found that the contour integration method discu:
in the preceding paragraph suffers from serious flaws even for simple ellipsoidal shapes
improved version of the local paraboloidal approximation that produces the normal vec
and the mean curvature simultaneously by global minimization was developed recentl
Zinchenko and Davis [209]. Tests showed that the global method produces more acct
normal vectors, but not necessarily more accurate mean curvatures.

When an interface has been discretized into quadratic triangular element defined by
nodes, the normal vector, directional normal curvatures, and mean curvature follow rea
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from the local parametric representation of the individual elements (Pozrikidis [127, 1:
139]; Kennedyet al.[65]). The mean curvature, in particular, may be computed as the rat
of the first to the second fundamental form of the surface defined in Egs. (4.8) and (4.
The following recipe gives the best results: (a) compute the normal vector at the no
of each triangle using the local triangle representation; (b) average the components of
normal vector over all triangles sharing a node; (c) normalize the averaged normal vec
(d) compute the surface gradient of the averaged normal vector over each triangle u
the local triangle representation; (e) compute the mean curvature at a specified point o
triangle as the ratio of the first to the second fundamental form of the surface. When a spl
has been discretized into eight quadratic triangles, the method just described produce
mean curvature without any numerical error!

8.2. Computation of the Singular Single-Layer Potential

Two distinct but somewhat related issues arise in the computation of the single-la
potential: (a) the accurate evaluation of the jump in interfacial tractibnand (b) the
accurate evaluation of the singular integral. The two issues are related in the sense
specialized methods for computing the single-layer potential may be devised for partict
expressions fonf.

In the case of two-dimensional or axisymmetric flow, the kernel of the single-lay
potential exhibits a logarithmic singularity which may be integrated by several metho
including the use of a Gaussian quadrature for alog-singular (e.g., [136]). Inthe case of th
dimensional flow, the kernel of the single-layer potential exhibits a weak singularity th
behaves as/t . Quadratures for integrating the single-layer potential over planar triangl
and rectangles have been developed by einal. [119]. A recent monograph edited by
Sladek and Sladek [170] reviews methods for computing weakly and selected stror
singular integrals in boundary-element implementations. In this section, we discuss sele
strategies pertinent to the integral equations of Stokes flow.

8.2.1. Isolating the jump in traction.Let us consider the single-layer potential over an
interfacial patctD that is enclosed by the closed cont@jrand introduce the single-layer
potential

|J-S(X0)E/DGij(X, Xo) Af; () d (X). (8.2)

Implementing a trapezoidal-like approximation to decouple the product of the two functic
in the integrand, we write

|].S(x0):i / Afi(x)dS(x)x/Gij(x,xo)dS(x), (8.3)
S Jo D

where & is the surface area dD. Assuming that the interface develops in-plane anc
transverse shear tensions, as discussed in Section 4, we perform a force balance ov
patch to find that the first integral on the right-hand side of (8.3) is given by

/DAf(x)dS(x) = — /D bX) - [t(X) + g(X) n(X)] dI(xX). (8.4)

For example, if the interface exhibits uniform isotropic tensjaonr = y P andq = 0,
whereP = | — nn is the tangential projection operator; in this cdser = yb.
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The computation of the right-hand side of (8.4) requires the evaluation of the in-pla
surface tension tensar and transverse shear tension veaoalong the contouc. In
contrast, the computation @f in the integrand on the left-hand side of (8.4) requires the
evaluation of the surface divergence or gradient ahdq over D, which can be a serious
source of numerical error. The approximation (8.3) was implemented by Pozrikidis [1-
for interfaces with isotropic tension, and by Pozrikidis [131], Ramanujan and Pozrikic
[150], and Pozrikidis [144] for interfaces developing in-plane and transverse shear tensis

8.2.2. Integration of the normal componentaf. The jump in tractionAf may be
decomposed into a normal and a tangential component, as

Af = xn+P. Af, (8.5)

wherey = n- Af. Each component may then be integrated independently using differe
methods. For example, if an interface exhibits uniform tensipp = y2«xm whereky, is
the mean curvature, and the tangential component vanishes.

If an interface is closed, the single-layer integral associated with the normal compor
of Af may be removed by use of an integral identity: conservation of mass for the flow c
to a point force allows us to write

/D Gij (X, X0) x () M (X) dS(x) = /D Gij (X, Xo) [x(X) — x X)] i (x)dS(x).  (8.6)

The integrand on the right-hand of (8.6) is nonsingular but not entirely regular. A Tay!
series expansion shows that as the integration poafproaches the evaluation pokat
the integrand tends to a finite value that depends on the orientation of the xeetqy. In
practice, however, this integral may be computed with adequate accuracy using an inte
tion quadrature for regular integrands (e.g., Pozrikidis [136, pp. 370—383]). An analogt
method for removing the singularity of the tangential compofem f by use of an integral
identity is not available.

8.2.3. Direct numerical computation of the single-layer integrah a typical boundary-
element implementation, a three-dimensional interface is discretized into a collectior
boundary elements, and the single-layer potential is computed over the individual eleme
When the evaluation poing lies in the interior, along the edges, or at the vertices of .
boundary element, then as the integration pgiapproachesg, the integrand exhibits a
weak V/|x — Xq| singularity, and the element is classified as “singular.”

To compute the single-layer potential over a singular elergemte write

IJ-S(Xo)=/DGij(x,xO)[Afi(X)—Afi(xO)]dS(x)+Afi(xO)/DGij(x,xO)dS(X). (8.7

As the integration poink approaches the evaluation poiq, the integrand of the first
integral on the right-hand side of (8.7) tends to a finite value that depends on the orienta
of the vectorx — xg, and the integral may be computed with adequate accuracy using
standard quadrature.

When the elements are flat triangles, and the pajrig a vertex, the second integral on
the right-hand side of (8.7) may be computed by analytical methods [27, 148]. A practi
alternative is to use the polar integration rule, which amounts to integrating in local po
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coordinates using a double Gauss—Legendre quadrature (e.g., Pozrikidis [136, pp. :
388]). A third option is to use a Gauss quadrature for two-dimensional integrals wjith a 1
singularity developed by Pinet al.[119].

To compute the single-layer potential over an element that is defined by more than tr
nodes, such as a curved triangle defined by six nodes, we break up the element ir
collection of flat triangles according to the location of the singular pajnand then either
perform the integration analytically, use the polar integration rule for singular flat triangl
described earlier in this section, or employ an integration quadrature. For example, if
evaluation point lies at the vertex of aquadratic triangle defined by six nodes, the quadr
triangle is broken up into one singular flat triangle and three nonsingular flat triangles.

8.3. Computation of the Principal-Value Integral of the Double-Layer Potential

In the case of two-dimensional or axisymmetric flow, the integrand of the principal-val
integral of the double-layer potential is nonsingular and may be computed using a stant
numerical method. In the case of three-dimensional flow, fie 1 x| singularity of the
principal value integral over@osedsurface may be removed using a vector identity, writing

PV
1P (%0) = C GO0 Tije (% X0) () dS(x)

= /D [ai (X) — Qi (X0)] Tijk (X, X0) Nk(X) d S(X) — 47 j (Xo), (8.8)

whereq is the density of the double-layer potential (e.g., Pozrikidis [127]). As the integratic
point x approaches the evaluation poiy the integrand on the right-hand side of (8.8)
tends to a finite value that depends on the orientation of the vieetoty; the integral may
be computed with adequate accuracy using a standard quadrature. A similar regulariz
may be performed when the poirg lies close to, but not precisely on the domain of
integrationD (Loewenberg & Hinch [91, 92]; Zinchenket al. [209, 210]; Zinchenko &
Davis [211]).

When the domain of integration is not closed, the computation of the double-layer |
tential becomes more challenging. Use of the polar integration rule to integrate over a
triangle, as discussed earlier for the single-layer potential, removeg|the Xq| singular-
ity and allows the application of a standard quadrature. Because, however, theTkgmel
of the free-space Green’s function vanishes over a flat element hosting the singular point
glecting the surface curvature introduces a significant numerical error on the orges of
wherex, is the mean curvature aids the element size. The implementation of the pola
integration rule over curved elements is cumbersome and has not been attempted. One
to bypass these difficulties is to introduce the closure of an open interface, and then com
the nonsingular double-layer integral over the extended boundary using a quadrature [1
Other methods are discussed in the articles collected by Sladek and Sladek [170].

8.4. Computation of the Principal Value of the Point-Source Integral

We consider now the computation of the principal value of the first integral on the rigt
hand sides of (3.12), named the point-source integral. This integral also arises in the s
of the self-induced motion of vortex sheets with particular reference to the Biot—Sav
integral (e.g., Pozrikidis [133]).
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Considering, for simplicity, an interface with constant surface tengione define the
point source potential

PV
175(x0) = P %0) dS00. (8.9)

As the integration poink approaches the evaluation pokgt the integrand on the right-
hand side of (8.9) exhibits a strong singularity, behaving like & xo|2. Our objective is
to reduce the order of the singularity by use of integral identities.

For the purpose of illustration, we confine our attention to the free-space press
Green’s function given by; (x, Xo) = 2X;/|X|®, whereX = x — Xo. An arbitrary pressure
Green’s functions may be decomposed into a singular part associated with the f
space Green'’s function and a regular complementary part, and the latter may be integ
using standard numerical methods.

To simplify the notation, we writgp; = —87 VGL, whereG' is the free-space Green's
function of Laplace’s equation given 16 (x, Xo) = 1/(4x|X|), Substituting this form into
(8.9), we findIPS(xg) = —87 15 (xq), where

PV

PV
1C (x0) E/ VG (X, Xg) d S(X) =—[vo/ G (x, xo)dS(x)] (8.10)
D D

is the principal value of the gradient of the Laplace potential. The derivatives of the gradi
Vj on the right-hand side of (8.10) are taken with respeebtd@he compute the gradient
of the Laplace potential, we may proceed in two ways.

In the first approach, we decompose the kervi@' into its normal and tangential
components, and write

1% (xo) = /D [N(X) — N(X)] N(X) - VG (X, Xo) d S(X) + N(Xo) /D n(x) - VG (X, Xo) d S(X)
PV
+/ P(X) - VG (X, X0) d S(x), (8.11)
D

whereP = | — nnisthe tangential projection operator. As the integration pogiproaches
the evaluation poinkg, the kernel of the first integral on the left-hand side of (8.11) tend
to afinite value that depends on the directiom ef xo. The integral may be computed with
adequate accuracy using a standard integration quadrature. Conservation of mass fc
flow due to point sink requires that the second integral on the left-hand side is egualio
Pozrikidis [142] shows that the third integral on the right-hand side of (8.12) is equal to

/ 2 km(X) GE (X, Xo) N(X) d S(X), (8.12)
D

wherex, is the mean curvature @. Since the kernel of this integral diverges only weakly as
1/|x — Xol, the integral may be computed with adequate accuracy using a numerical met
that is analogous to that described earlier for the single-layer Stokes potential involvi
for example, the polar integration rule.

In the second approach developed by Zinchenko and co-workers [209—-211], the grac
of the Laplace integral is decomposed into a hormal and a tangential component, and
componentis treated individually. To compute the principal value of the normal compone
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we express it in the form
N(Xo)[N(Xo) - I°-(X0)] = N(Xo) /D [N(X) + N(xp)] - VG (X, Xo) d S(X)

PV
—n(xo)/ n(x) - VG- (x, Xg) d (x). (8.13)
D

As the integration poink approaches the singular poixy, the kernel of the first integral
on the left-hand side of (8.13) tends to a finite value that depends on the directienef
(Zinchenkoet al. [210, p. 1503]). In fact, when the integration domain is a sphere, thi
integrand vanishes identically at every point. A formal proof that involves expanding tl
position and normal vector in Taylor series with respect to surface curvilinear coordina
was provided by Zinchenko to this author in personal communication. Conservation of m
for the flow due to point sink requires that the second integral on the left-hand side of (8.
is equal to—1/2.

To compute the tangential component of the gradient of the Laplace potential, we n
proceed in two ways. In the indirect approach, we evaluate the last integral of the Gree
function in (8.10) over the interface, and then compute its tangential gradient by numer
differentiation, as discussed by Baker [6] and Badtexl.[7] and implemented by Pozrikidis
[142, 143]. In the direct approach, we express the tangential component in the form

N(xo) x [1%(x0) x N(x0)] = / N(Xo) x [VG" (X, Xo) x N(X0)] d S(x)
D
= / N(Xo) x {VG"(X, Xo) x [N(X0) — N(X)]} dSX)
D
—n(Xg) X / n(x) x VG-(x, xg) d S(x). (8.14)
D

Expressing the outer triple product within the first integral on the right-hand side of (8.14)
terms of two inner products, we find that, as the integration poémproaches the singular
point xo, the kernel tends to a finite value that depends on the directian-ofo [211].
Using the divergence theorem to convert the second integral on the right-hand side of (8
to a volume integral over the region enclosedbywe find that this integral vanishes.

Combining Egs. (8.13) and (8.14), we derive an expression for the principal value of
gradient of the Laplace potential in terms of a nonsingular integral,

1°(X0) = N(xo) /D[n(X) +n(X)] - VG- (X, X0) d S(X)
+ /Dn(xo) x {VG"(x, Xg) x [N(Xg) — n(x)]}dS(x)+%n(xo) (8.15)
or
1%t (x0) = /D {[INxo)N(X) +NEON(X0)] - VG (X, X0)
+[1 — n(Xo) - N(X)] VG- (x, Xo)} d S(x) + % Nn(Xo). (8.16)

The right-hand side of (8.16) involves a nonsingular but multivalued integrand.
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Considering now the single-layer potential (3.10) for constant surface tepsioa use
(8.16) to express it in the form

17 (%0) = 4ry / {nJ-(xO)[n(x)-VGL(x, X0)] 4 nj () [N(Xo) - VG- (X, X0)]
D

G-
+[1 —n(xo) - N(X)] W(X’ Xo0) N (X)
]

1
- g-rijk (X, Xo0) [Ni (X) + Ni (Xo)] nk(X)} dS(x). (8.17)

In the case of the free-space Green’s function, we recover expression (2.11) of Zinche
et al.[211] obtained using a somewhat different method.

8.5. lterative Solution of the Integral Equations

If all interfaces are closed, the integral equations of the second kind may be solvec
the method of successive substitutions, as long as none of the fluids is inviscid. The raf
convergence may be improved by removing the marginal eigenvalues using the methc
Weilandt deflation developed by Kim and Karrila [66] and discussed by Pozrikidis [12]
Zinchenkoet al. [210] found that, even with eigenvalue removal, the rate of convergen
becomes prohibitively slow when two interfaces are separated by a small distance,
implemented the method of biconjugate gradients as an alternative.

8.6. Mesh-Control and Regridding

In a typical numerical implementation, a three-dimensional interface is regarded as be
composed of a continuous distribution of marker points that are labeled permanently u:
two “convected” surface curvilinear coordinatésn). If the positions of the marker points
are described by the functiofi(&, n, t), then the motion of the marker points is governec
by the differential equation defining the marker point velotity= dX/dt, which is to be
integrated in time subject to a specified initial condition. Kinematic considerations requ
that the normal component of the marker point velocity be equal to the normal compor
of the velocity of the fluid, but the tangential component may be arbitrary. The general fo
of the marker point velocity is given in Eq. (3.18).

The choice of the marker point velocity is exercised with the practical objective
preventing point clustering that may lead to numerical instabilities and deter the spa
resolution. For example, if an interface is stationary, it is appropriate to set the tanger
marker point velocity to zeray = 0, so that the marker points remain stationary. When
on the other hand, the interface translates with velodit§ without deformation, it is
appropriate to sav = P - UTR so that the marker points retain their relative position.

A dynamical simulation involves the computation of the motion of a finite collection c
marker points defining the vertices of boundary elements. Loewenberg and Hinch [91,
and Cristiniet al.[26] developed a method of dynamically adjusting the tangential velocit
of the marker points over the interfaces of two interacting drops in simple shear flc
Coulliette and Pozrikidis [25] used a variation of their method to simulate the motion o
file of drops in Poiseuille flow. Zinchenket al.[210, 211] and Zinchenko and Davis [209]
found that an alternative method, “passive mesh stabilization,” performs better for m
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FIG. 6. Deformation of a low-viscosity liquid drop in infinite simple shear flow computed by the method o
interfacial dynamics. Interfacial regridding is done with the advancing front method [72].

general types of motion. Their algorithm is based on the idea of computing the tangen
velocity of each node by minimizing a carefully devised objective function defined wil
respect to the distances between nodes, the maximum mean curvature of the interface
the element surface areas.

Kwak and Pozrikidis [72] implemented regridding in physical space using the advanci
front method. The advantage of this approach is that the density of the interfacial eleme
may readily be increased or descreased at regions of high or low curvature, while the
of the triangles and their skewness is kept within specified thresholds, independent of
motion. Stages in the deformation of a low-viscosity liquid drop subject to an infinite simp
shear flow simulated using this method are shown in Fig. 6.

8.7. Smoothing

Dynamical simulations of interfacial motion suffer from numerical instabilities whos
severity depends on the type of flow and physical properties of the interface. Since interfa
dynamics in Stokes flow is inherently well posed, as opposed to vortex-sheet dynamic
inviscid flow, which is inherently ill posed, the instabilities may be eliminated by improvin
the accuracy of the numerical method, by decreasing the size of the time step, or by d
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both. In practice, however, the higher the spatial resolution, the smaller the time step
a stable simulation, and this inflates the cost of the simulation. A practical alternat
for carrying out extended simulations is to filter out numerical oscillations by smoothil
the position of marker points and possibly dynamically active fields over the interfac
Smoothing may be interpreted in two complementary ways: local or global polynomial
Fourier spectrum expansion followed by truncation; and the implementation of an evolut
law for the smoothed function incorporating second- or fourth-order diffusion.

Smoothing two-dimensional and axisymmetric shapes and functions defined over t
can be done efficiently using formulae derived by Longuet—Higgins and Cokelet [94] &
Dold [34]. Numerical methods for smoothing three-dimensional shapes described by
angulation are less well developed. Zinchegkal.[211] and Zinchenko and Davis [209]
eliminated surface irregularities by adding to the normal component of the velocity an
ditional term involving the local mean curvature or the surface Laplacian of the third pow
of the mean curvature. Pozrikidis [143] implemented smoothing by mapping a closed
terface onto the unit sphere, expanding the smoothed function in surface harmonics def
in terms of associated Legendre functions, truncating the spectrum of the expansion,
then reproducing the surface function from the truncated expansion.

8.8. Spectral-Element Methods

Occhialiniet al.[116], Muldowney and Higdon [109], and Pozrikidis [141] implementec
spectral-element orthogonal-collocation methods for solving the integral equations of t
and three-dimensional Stokes flow. In the case of three-dimensional flow considerec
Higdon and coworkers, the elements have rectangular shapes.

Basis functions for spectral expansions over triangular elements defined in term:
Jacobi polynomials have been developed by Dubiner [35] and Sherwin and Karniad:
[165], as discussed by Heinrichs [57]. In the orthogonal collocation method, the integ
equation is enforced at scaled zeros of the basis functions or scaled base points of a G
triangle integration quadrature to achieve spectral accuracy. The accurate computatic
the singular boundary integrals, however, requires the use of specialized quadrature
numerical integration of singular, weakly singular, and nearly singular integrals over surf:
elements that are not available.

8.9. Fast-Summation Methods

When a large number of interfaces are involved, the computation of the single- &
double-layer hydrodynamic potential becomes prohibitively expensive, and the use of
pedited or fast summation methods for solving the integral equations becomes neces
In one approach, the number of function evaluations is reduced by expressing the ir
action between two well-separated particles in terms of multipole expansions, where
coefficients of the singularities are computed from the instantaneous geometrical sh
[22]. In the fast-multipole-method for Stokes flow developed by Sangani and Mo [15
for suspensions of spherical particles, the Stokes-flow singularities are grouped into bo
and their induced velocity is expressed in terms of multipole expansions. Zinchenko
Davis [209] argued that an alternative approach is better suited for nonspherical interfz
in triply periodic flow. The development and implementation of efficient general-purpo
fast-solution methods is an area of active research [70].
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TABLE |
Categories of Problems Studied by the Method of Interfacial Dynamics for Stokes Flow. The
Qualifiers 3D, 2D, and Axs, Stand, Respectively, for Three-Dimensional, Two-Dimensional, and
Axisymmetric Flow

Drops and bubbles

o Deformation of a drop or bubble in extensional flow (2D, axs): Youngren and Acrivos [201], Rallison ar
Acrivos [149], Pozrikidis [134, 137].

o Relaxation of an extended drop (axs): Stone and Leal [177, 178], Tjadtjatl{185], Lister and Stone [90].

e Deformation of a compund drop or liquid shell in extensional flow (axs): Stone and Leal [179].

o Deformation of a drop in infinite linear flow (3D): Rallison [148], Kennegtyal. [65], Uijttewaal and Nijhof
[189], Kwak and Pozrikidis [72].

e Motion of a rising or falling drop (axs): Koh and Leal [68], Pozrikidis [124], Muldowney and Higdon [109].

e Deformation of a drop in a rotating fluid (axs): Lister and Stone [89].

o Deformation of an electrically charged drop (axs): Baygetts. [13].

Drop and bubble interactions
e Interaction of rising or falling drops (axs, 3D): Manga and Stone [98, 99, 100], Manga [97], Davis [29],
Zinchenkoet al.[211], Roumeliotis and Fulford [155].
e Pairwise drop interception in shear flow (2D, 3D): Loewenberg and Hinch [92], Li and Pozrikidis [109].

Periodic suspensions
e Simple shear flow of doubly-periodic suspensions (2D)etlal.[81], Charles and Pozrikidis [22].
e Simple shear flow of triply-periodic suspensions (3D): Pozrikidis [129], Loewenberg and Hinch (1996) [9!
Loewenberg [93], Zinchenko and Davis [209].

Drops and bubbles near walls and interfaces
e Motion of a drop normal to an interface (axs): Chi and Leal [23], Asebdl.[3], Tanzoshet al.[184], Koch
and Koch [67].
e Gravity-driven motion of a drop normal to a wall (axs): Pozrikidis [125].
o Dropin shear flow above a plane wall (3D): Uijtterwaahl.[188], Kennedyet al.[65], Uijtterwaal and Nijhof
[189].
Flow past drops and bubbles adhering to a wall

e Shear flow past a drop adhering to a wall (2D, 3D): Li and Pozrikidis [82], Dimitrakopoulos and
Higdon [31, 32], Yon and Pozrikidis [199], Schleizer and Bonnecaze [160].

Drops and bubbles in tube and channel flows

e Drops moving through a circular tube due to pressure gradient or gravity (axs): Martinez and Udell [102, 1(
Pozrikidis [128].

e Suspensions of drops in plane Couette/Poiseuille or semi-infinite shear flow above a plane wall (2D):
Zhou and Pozrikidis [205, 206, 207], Halpeghal.[50], Li and Pozrikidis [84].

e Semi-infinite bubble through a compliant channel with elastic walls (2D): Getvat.[44], Yap and Gaver
[197].

e Motion of drops through a branched or converging-diverging channel (2D): Manga [95], Kétaala63].

e Droplet motion in a cavity (2D): Manga [96].

e Motion of a file of drops through a circular tube (3D): Coulliette and Pozrikidis [25].

Drop at the tip of a tube
e Drop or bubble at the tip of a tube (axs): Zhang and Stone [203], Ebag[195].

Drops and bubbles in the presence of surfactants
e Self-induced deformation of a capsule (axs): Sapir and Nir [159].
e Drop in elongational flow (2D, axs): Stone and Leal [180], Millikenal. [106], Pawar and Stebe [118],
Pozrikidis [137], Eggleton and Stebe [39], Eggletdral. [38].
e Deformation of a drop translating in infinite space or through a tube (axs): Borhan and Mao [16],
Tsai and Miksis [187], Johnson and Borhan [60, 61].
e Deformation of a drop in linear flow (3D): Li and Pozrikidis [83], Yon and Pozrikidis [198].
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TABLE | —Continued

o Deformation of a drop adhering to a wall (2D, 3D): Yon and Pozrikidis [199], Schleizer and Bonnecaze [16
e Bubble at the tip of a tube (axs): Worg al. [196].
e Semi-infinite bubble through a flexible channel (2D): Yap and Gaver [197].

Thermocapillary motion
e Motion of a drop near a plane wall (axs): Ascoli and Leal [4].
e Migration of two deformable drops (axs): Zhou and Davis [204].

Drop and bubble coalescence and sintering
e Coalescence of two drops (2D, axs): Hiram and Nir [58], Kuiken [71], Petnal. [147].
e Shrinkage of bubbles trapped in a liquid (2D, axs): Van de Vorst [190, 191, 192], tiald146].

Liquid threads and annular layers
o Instability of threads and annular layers coated on the interior surface of a circular tube (axs):
Newhouse and Pozrikidis [114], Pozrikidis [140], Kwak and Pozrikidis [73], Ketl.[75].
o Instability of a liquid bridge subtended between two coaxial cylinders (axs): Gatide{43, 44].

Liquid capsules
e Capsules with fibrous interfaces (axs): Sapir and Nir [159], Nir [115], Zinemanas and Nir [212, 213, 214].
o Elastic capsulesin elongational flow (axs)etal.[80], Batres—Biesel [9], Diart al.[30], Kwak and Pozrikidis
[74].
e Elastic capsules passing through constrictions (axs): Leyrat—-Maurin anceBaBiesel [79].
e Capsules with viscous interfaces (3D): Pozrikidis [130].
e Capsules with incompressible interfaces (axs, 3D): Pozrikidis [126], Zhou and Pozrikidis [208],
Krauset al.[69].
e Elastic capsules with various unstressed shapes in simple shear flow (3D): Pozrikidis [131], Ramanujan
Pozrikidis [150], Navot [112], Pozrikidis [109].
o Deformation of elastic capsules and flow of doubly-periodic suspensions (2D): Breyiannis and Pozrikidis [

Films, layers, and extended interfaces
e Extruded film flow (2D): Kelmanson [62].
e Film flow down a plane wall into a pool (2D): Hansen [52].
e Film-flow down a periodic wall (2D): Pozrikidis [123].
o Deformation of an interface due to liquid withdrawal (axs): Lister [87].
e Spreading of a liquid over an interface (2D, axs): Lister and Kerr [88].
e Gravitational instability of a film on a plane wall (2D): Newhouse and Pozrikidis [113].
e Film-flow down a plane wall with a hump or an attached particle (2D, 3D): Hansen [51, 53], Pozrikidis al

Thoroddsen [145].
e Multilayer flows (2D): Pozrikidis [134, 135, 138].
Rigid particles near interfaces

e Motion of spherical particles normal to a deformable interface (axs): Leal and Lee [77], Lee and Leal [7
Gelleret al.[46], Stoos and Leal [181, 182], Manga and Stone [100].

9. OVERVIEW OF APPLICATIONS

Several versions of the method of interfacial dynamics for Stokes flow have been |
plemented to study a variety of problems in science and engineering with application:
materials science, chemical engineering, geophysics, and biomechanics. A review of ¢
work was given by Tanzostt al.[184] and Stone [176]. Table | presents an overview of flow
configurations considered, illustrating the diversity of the applications and summariz
the state of the art regarding theoretical development and numerical implementation.
abbreviations 3D, 2D, and axs stand, respectively, for three-dimensional, two-dimensio
and axisymmetric flow. A collection of simulation programs that solve several families
problems is available in the fluid dynamics library FDLIB [139].
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ails —————rr— — ——————————

FIG. 7. Deformation of a liquid capsule enclosed by an elastic membrane whose unstressed shape
biconcave disk, subject to simple shear flow alongthaxis [144]. (a) Sequence of profiles in thg plane
of symmetry; the heavy solid line corresponds to the biconcanve disk; (b, c) three-dimensional perspect
corresponding to the shapes drawn with the heavy dashed lines in (a).



INTERFACIAL DYNAMICS FOR STOKES FLOW 291

FIG. 7—Continued

We conclude this section by presenting two illustrations. Figure 7 shows results
recent simulations on the deformation of a liquid capsule enclosed by an elastic me
brane with the unstressed shape of a biconcave disk, subject to a simple shear flow [
Figure 7a illustrates a sequence of profiles in the plane of symmetry, with the heavy s
line corresponding to the biconcanve disk, and Figs. 7b—7c illustrate three-dimensic
perspectives corresponding to the profiles drawn with the heavy dashed lines in Fig.
Figure 8 shows instantaneous profiles of liquid drops in a two-dimensional doubly perio
suspension evolving under the influence of a simple shear flow; the interfaces are occu
by an insoluble surfactant (simulation conducted for the purpose of this review).

10. FUTURE DEVELOPMENTS

Since the pioneering work of Youngren and Acrivos [201], some 25 years ago, Cc
siderable progress has been made in the theoretical foundation and implementatic
boundary-integral methods for interfacial flow. The general subject continues to attract
attention of researchers in the fields of applied mathematics, computational science,
mainstream engineering, and short courses are offered in at least two institutions. In
preceding sections, we identified several topics for further theoretical and computatic
development, including the following:

¢ Investigation of the properties of the integral equations for suspensions of drops
capsules with different physical properties and general flow configurations.

e Development of fast methods for the iterative solution of the integral equations.

e Development of efficient integration quadratures for singular integrands over thre
dimensional elements with flat and curved shapes.
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FIG. 8. Instantaneous profiles of liquid drops in a two-dimensional doubly-periodic suspension evolvil
under the influence of a simple shear flow in the horizontal direction; the interfaces are occupied by an insol
surfactant.

¢ Implementation of spectral-element methods over triangulated interfaces.

e Numerical methods for smoothing the position of interfacial marker points and fun
tions defined over a three-dimensional interfaces.

e Fast, general-purpose methods for simulating large systems in two- and thr
dimensional flow.

e Development of robust algorithms for regridding in triangulaton.

e Development of efficient formulations for nonNewtonian fluids and flow at nonzer
Reynolds number.

Among all fields of application, the field of biomechanics and biorheology is likely t
benefit the most from the efficiency, elegance, and convenience of the method of interfa
dynamics for Stokes flow. The next decade is expected to witthess the growth of the emer
discipline of computational biomechanics, and boundary-integral methods, and those \
contribute to their development and implementation, will certainly play an important rol



INTERFACIAL DYNAMICS FOR STOKES FLOW 293

APPENDIX

Consider a nonsingular vector functiéhdefined in three-dimensional space, and ar
open surfacé® bounded by the closed contolr Stokes’ circulation theorem provides us
with the identity

/(VXF).ndsz/F.tdl, (A.1)
D C

wheren is the unit vector normal t®, t is the unit vector tangential 10 oriented according
to the right-handed rule with respectrpand| is the arc length alon@ measured in the
direction oft. SettingF = A x B, whereA andB are two arbitrary nonsingular vector
functions defined in the three-dimensional space, and reverting to index notation, we fi

Gijkéklm/8 (A Bm)nj dS= /CFitid|~ (A.2)
Xj

Straightforward manipulation of the left-hand side of (A.2) yields
(allajm - 5|m51I)/ _(AI Bm)nl ds
|
= [ —((AB)ndS— | —(A;B)ndS= | FKtdl. A.3
/Daxj( i Bjn /D 3Xj( iBin /C it (A.3)

If the surfaceD is closed, the integral on the right-hand side of (A.3) vanishes yielding tt
identity

a d
/Dan(Ai Bj)nidS:AM(Aj Bi)nidS (A.4)

As an application, we identify the vector functiérnwith one of the unit vectors (1, 0, 0),
(0,1, 0), or (0, 0, 1), and obtain the identity

98B; ndS= /ﬁn ds (A.5)
D 9X;

presented by Rosenkilde [156].
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